8,984 research outputs found

    Optimal model-free prediction from multivariate time series

    Get PDF
    © 2015 American Physical Society.Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation

    Optimal model-free prediction from multivariate time series

    Get PDF
    Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal pre-selection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used sub-optimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Ni\~no Southern Oscillation.Comment: 14 pages, 9 figure

    Precise influence evaluation in complex networks

    Full text link
    Evaluating node influence is fundamental for identifying key nodes in complex networks. Existing methods typically rely on generic indicators to rank node influence across diverse networks, thereby ignoring the individualized features of each network itself. Actually, node influence stems not only from general features but the multi-scale individualized information encompassing specific network structure and task. Here we design an active learning architecture to predict node influence quantitively and precisely, which samples representative nodes based on graph entropy correlation matrix integrating multi-scale individualized information. This brings two intuitive advantages: (1) discovering potential high-influence but weak-connected nodes that are usually ignored in existing methods, (2) improving the influence maximization strategy by deducing influence interference. Significantly, our architecture demonstrates exceptional transfer learning capabilities across multiple types of networks, which can identify those key nodes with large disputation across different existing methods. Additionally, our approach, combined with a simple greedy algorithm, exhibits dominant performance in solving the influence maximization problem. This architecture holds great potential for applications in graph mining and prediction tasks

    How complex climate networks complement eigen techniques for the statistical analysis of climatological data

    Full text link
    Eigen techniques such as empirical orthogonal function (EOF) or coupled pattern (CP) / maximum covariance analysis have been frequently used for detecting patterns in multivariate climatological data sets. Recently, statistical methods originating from the theory of complex networks have been employed for the very same purpose of spatio-temporal analysis. This climate network (CN) analysis is usually based on the same set of similarity matrices as is used in classical EOF or CP analysis, e.g., the correlation matrix of a single climatological field or the cross-correlation matrix between two distinct climatological fields. In this study, formal relationships as well as conceptual differences between both eigen and network approaches are derived and illustrated using exemplary global precipitation, evaporation and surface air temperature data sets. These results allow to pinpoint that CN analysis can complement classical eigen techniques and provides additional information on the higher-order structure of statistical interrelationships in climatological data. Hence, CNs are a valuable supplement to the statistical toolbox of the climatologist, particularly for making sense out of very large data sets such as those generated by satellite observations and climate model intercomparison exercises.Comment: 18 pages, 11 figure
    • …
    corecore