261 research outputs found

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Exploiting Opponent Modeling For Learning In Multi-agent Adversarial Games

    Get PDF
    An issue with learning effective policies in multi-agent adversarial games is that the size of the search space can be prohibitively large when the actions of both teammates and opponents are considered simultaneously. Opponent modeling, predicting an opponent’s actions in advance of execution, is one approach for selecting actions in adversarial settings, but it is often performed in an ad hoc way. In this dissertation, we introduce several methods for using opponent modeling, in the form of predictions about the players’ physical movements, to learn team policies. To explore the problem of decision-making in multi-agent adversarial scenarios, we use our approach for both offline play generation and real-time team response in the Rush 2008 American football simulator. Simultaneously predicting the movement trajectories, future reward, and play strategies of multiple players in real-time is a daunting task but we illustrate how it is possible to divide and conquer this problem with an assortment of data-driven models. By leveraging spatio-temporal traces of player movements, we learn discriminative models of defensive play for opponent modeling. With the reward information from previous play matchups, we use a modified version of UCT (Upper Conference Bounds applied to Trees) to create new offensive plays and to learn play repairs to counter predicted opponent actions. iii In team games, players must coordinate effectively to accomplish tasks while foiling their opponents either in a preplanned or emergent manner. An effective team policy must generate the necessary coordination, yet considering all possibilities for creating coordinating subgroups is computationally infeasible. Automatically identifying and preserving the coordination between key subgroups of teammates can make search more productive by pruning policies that disrupt these relationships. We demonstrate that combining opponent modeling with automatic subgroup identification can be used to create team policies with a higher average yardage than either the baseline game or domain-specific heuristics

    Automated Detection of Complex Tactical Patterns in Football—Using Machine Learning Techniques to Identify Tactical Behavior

    Get PDF
    Football tactics is a topic of public interest, where decisions are predominantly made based on gut instincts from domain-experts. Sport science literature often highlights the need for evidence-based research on football tactics, however the limited capabilities in modeling the dynamics of football has prevented researchers from gaining usable insights. Recent technological advances have made high quality football data more available and affordable. Particularly, positional data providing player and ball coordinates at every instance of a match can be combined with event data containing spatio-temporal information on any event taking place on the pitch (e.g. passes, shots, fouls). On the other hand, the application of machine learning methods to domain-specific problems yields a paradigm shift in many industries including sports. The need for more informed decisions as well as automating time consuming processes—accelerated by the availability of data—has motivated many scientific investigations in football analytics. This thesis is part of a research program combining methodologies from sports and data science to address the following problems: the synchronization of positional and event data, objectively quantifying offensive actions, as well as the detection of tactical patterns. Although various basic insights from the overall research program are integrated, this thesis focuses primarily on the latter one. Specifically, positional and event data are used to apply machine learning techniques to identify eight established tactical patterns in football: namely high-/mid-/low-block defending, build-up/attacking play in the offense, counterpressing and counterattacks during transitions, and patterns when defending corner-kicks, e.g. player-/zonal- or post-marking. For each pattern, we consolidate definitions with football experts and label large amounts of data manually using video recordings. The inter-labeler reliability is used to ensure that each pattern is well-defined. Unsupervised techniques are used for the purpose of exploration, and supervised machine learning methods based on expert-labeled data for the final detection. As an outlook, semi-supervised methods were used to reduce the labeling effort. This thesis proves that the detection of tactical patterns can optimize everyday processes in professional clubs, and leverage the domain of tactical analysis in sport science by gaining unseen insights. Additionally, we add value to the machine learning domain by evaluating recent methods in supervised and semi supervised machine learning on challenging, real-world problems

    The efficacy of virtual reality in professional soccer

    Get PDF
    Professional soccer clubs have taken an interest to virtual reality, however, only a paucity of evidence exists to support its use in the soccer training ground environment. Further, several soccer virtual reality companies have begun providing solutions to teams, claiming to test specific characteristics of players, yet supportive evidence for certain measurement properties remain absent from the literature. The aims of this thesis were to explore the efficacy of virtual reality being used in the professional football training ground environment. To do so, this thesis looked to explore the fundamental measurement properties of soccer specific virtual reality tests, along with the perceptions of professional coaches, backroom staff, and players that could use virtual reality. The first research study (Chapter 3) aimed to quantify the learning effect during familiarisation trials of a soccer-specific virtual reality task. Thirty-four professional soccer players age, stature, and body mass: mean (SD) 20 (3.4) years; 180 (7) cm; 79 (8) kg, participated in six trials of a virtual reality soccer passing task. The task required participants to receive and pass 30 virtual soccer balls into highlighted mini-goals that surrounded the participant. The number of successful passes were recorded in each trial. The one-sided Bayesian paired samples t-test indicated very strong evidence in favour of the alternative hypothesis (H1)(BF10 = 46.5, d = 0.56 [95% CI = 0.2 to 0.92]) for improvements in total goals scored between trial 1: 13.6 (3.3) and trial 2: 16 (3.3). Further, the Bayesian paired-samples equivalence t-tests indicated strong evidence in favour of H1 (BF10 = 10.2, d = 0.24 [95% CI = -0.09 to 0.57]) for equivalence between trial 4: 16.7 (3.7) and trial 5: 18.2 (4.7); extreme evidence in favour of H1 (BF10 = 132, d = -0.02 [95% CI = -0.34 to 0.30]) for equivalence between trials 5 and 6: 18.1 (3.5); and moderate evidence in favour of H1 (BF10 = 8.4, d = 0.26 [95% CI = -0.08 to 0.59]) for equivalence between trials 4 and 6. Sufficient evidence indicated that a learning effect took place between the first two trials, and that up to five trials might be necessary for performance to plateau in a specific virtual reality soccer passing task.The second research study (Chapter 4) aimed to assess the validity of a soccer passing task by comparing passing ability between virtual reality and real-world conditions. A previously validated soccer passing test was replicated into a virtual reality environment. Twenty-nine soccer players participated in the study which required them to complete as many passes as possible between two rebound boards within 45 s. Counterbalancing determined the condition order, and then for each condition, participants completed four familiarisation trials and two recorded trials, with the best score being used for analysis. Sense of presence and fidelity were also assessed via questionnaires to understand how representative the virtual environments were compared to the real-world. Results showed that between conditions a difference was observed (EMM = -3.9, 95% HDI = -5.1 to -2.7) with the number of passes being greater in the real-world (EMM = 19.7, 95% HDI = 18.6 to 20.7) than in virtual reality (EMM = 15.7, 95% HDI = 14.7 to 16.8). Further, several subjective differences for fidelity between the two conditions were reported, notably the ability to control the ball in virtual reality which was suggested to have been more difficult than in the real-world. The last research study (Chapter 5) aimed to compare and quantify the perceptions of virtual reality use in soccer, and to model behavioural intentions to use this technology. This study surveyed the perceptions of coaches, support staff, and players in relation to their knowledge, expectations, influences, and barriers of using virtual reality via an internet-based questionnaire. To model behavioural intention, modified questions and constructs from the Unified Theory of Acceptance and Use of Technology were used, and the model was analysed through partial least squares structural equation modelling. Respondents represented coaches and support staff (n = 134) and players (n = 64). All respondents generally agreed that virtual reality should be used to improve tactical awareness and cognition, with its use primarily in performance analysis and rehabilitation settings. Generally, coaches and support staff agreed that monetary cost, coach buy-in and limited evidence base were barriers towards its use. In a sub-sample of coaches and support staff without access to virtual reality (n = 123), performance expectancy was the strongest construct in explaining behavioural intention to use virtual reality, followed by facilitating conditions (i.e., barriers) construct which had a negative association with behavioural intention. This thesis aimed to explore the measurement properties of soccer specific virtual reality tests, and the perceptions of staff and players who might use the technology. The key findings from exploring the measurement properties were (1) evidence of a learning curve, suggesting the need for multiple familiarisation trials before collecting data, and (2) a lack of evidence to support the validity of a virtual reality soccer passing test as evident by a lack of agreement to a real-world equivalent. This finding raises questions on the suitability for virtual reality being used to measure passing skill related performance. The key findings from investigating the perceptions of users included, using the technology to improve cognition and tactical awareness, and using it in rehabilitation and performance analysis settings. Future intention to use was generally positive, and driven by performance related factors, yet several barriers exist that may prevent its widespread use. In Chapter 7 of the thesis, a reflective account is presented for the reader, detailing some of the interactions made with coaches, support staff and players in relation to the personal, moral, and ethical challenges faced as a practitioner-researcher, working and studying, respectively, in a professional soccer club

    Distance construction and clustering of football player performance data

    Get PDF
    I present a new idea to map football players information by using multidimensional scaling and to cluster football players. The actual goal is to define a proper distance measure between players. The data was assembled from whoscored.com. Variables are of the mixed type, containing nominal, ordinal, count and continuous information. In the data pre-processing stage, four different steps are followed through for continuous and count variables: 1) representation (i.e., considerations regarding how the relevant information is most appropriately represented, e.g., relative to minutes played), 2) transformation (football knowledge as well as the skewness of the distribution of some count variables indicates that transformation should be used to decrease the effective distance between higher values compared to the distances between lower values), 3) standardisation (in order to make within-variable variations comparable), and 4) variable weighting including variable selection. In a final phase, all the different types of distance measures are combined by using the principle of the Gower dissimilarity (Gower, 1971). As the second part of this thesis, the aim was to choose a suitable clustering technique and to estimate the best number of clusters for the dissimilarity measurement obtained from football players data set. For this aim, different clustering quality indexes have been introduced, and as first proposed by Hennig (2017), a new concept to calibrate the clustering quality indexes has been presented. In this respect, Hennig (2017) proposed two random clustering algorithms, which generates random clustering points from which standardised clustering quality index values can be calculated and aggregated in an appropriate way. In this thesis, two new additional random clustering algorithms have been proposed and the aggregation of clustering quality indexes has been examined with different types of simulated and real data sets. In the end, this new concept has been applied to the dissimilarity measurement of football players

    Perceção e arquitectura de software para robótica móvel

    Get PDF
    Doutoramento em Ciências da ComputaçãoWhen developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.Durante o desenvolvimento de software para robôs autónomos móveis, e inevitavelmente necessário lidar com algum tipo de perceção. Al em disso, ao lidar com agentes que possuem algum tipo de raciocínio para executar as suas ações, há a necessidade de modelar o ambiente e o estado interno do robô de forma a representar o cenário onde o robô opera. Inserido no grupo ATRI, integrado na unidade de investigação IEETA da Universidade de Aveiro, este trabalho usa dois dos projetos do grupo como plataformas de teste, particularmente no cenário de futebol robótico com robôs reais. Com o principal objetivo de desenvolver algoritmos para fusão sensorial e de informação que possam ser usados eficazmente nestas equipas, v arias abordagens de estado da arte foram estudadas, implementadas e adaptadas para cada tipo de robôs. No âmbito da equipa de RoboCup MSL, CAMBADA, o principal foco foi a perceção da bola e obstáculos, com a criação de modelos capazes de providenciar informação estendida para que o raciocino do robô possa ser cada vez mais eficaz. Para o alcançar, v arias metodologias foram analisadas, implementadas, comparadas e melhoradas. Em relação a bola, foi efetuada uma análise de metodologias de filtragem para estabilização da sua posição e estimação da sua velocidade. Tendo o guarda-redes em mente, foi também realizado trabalho para providenciar informação de bolas no ar. Quanto aos obstáculos, foi criada uma nova definição para a forma como são detetados pela visão e para o tipo de informação fornecida, bem como uma metodologia para identificar quais dos obstáculos são colegas de equipa. Além disso foi desenvolvido um algoritmo de rastreamento que, no final, atribui um identicador único a cada obstáculo. Associado a melhoria na perceção dos obstáculos foi criado um novo algoritmo para realizar desvio reativo de obstáculos. No contexto da equipa de RoboCup SPL, Portuguese Team, al em da inevitável adaptação de vários dos algoritmos j a desenvolvidos para fusão sensorial e de informação, tendo em conta que foi recentemente criada, o objetivo foi criar uma arquitetura sustentável de software que possa ser a base para futuro desenvolvimento modular. A arquitetura de software criada e baseada numa série de processos diferentes e métodos de comunicação entre eles. Todos os processos foram criados ou adaptados para a nova arquitetura e um conjunto base de papeis e comportamentos foi definido para obter uma framework funcional base. Em termos de perceção, o principal foco foi a definição de um modelo de projeção e extração de pose da câmara que consiga providenciar informação em coordenadas métricas. O segundo objetivo principal era adaptar o algoritmo de localização da CAMBADA para funcionar nos robôs NAO, considerando todas as limitações apresentadas quando comparando com a equipa MSL, principalmente em termos de recursos computacionais. Um conjunto de ferramentas de suporte foram desenvolvidas ou melhoradas para auxiliar o teste e desenvolvimento em ambas as equipas. Em geral, o trabalho desenvolvido durante esta tese melhorou o desempenho da equipas durante os jogos e também a eficácia da equipa de programação durante as fases de desenvolvimento e teste
    corecore