1,332 research outputs found

    A kilobit hidden SNFS discrete logarithm computation

    Get PDF
    We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime pp looks random, and p−−1p--1 has a 160-bit prime factor, in line with recommended parameters for the Digital Signature Algorithm. However, our p has been trapdoored in such a way that the special number field sieve can be used to compute discrete logarithms in F_p∗\mathbb{F}\_p^* , yet detecting that p has this trapdoor seems out of reach. Twenty-five years ago, there was considerable controversy around the possibility of back-doored parameters for DSA. Our computations show that trapdoored primes are entirely feasible with current computing technology. We also describe special number field sieve discrete log computations carried out for multiple weak primes found in use in the wild. As can be expected from a trapdoor mechanism which we say is hard to detect, our research did not reveal any trapdoored prime in wide use. The only way for a user to defend against a hypothetical trapdoor of this kind is to require verifiably random primes

    Root optimization of polynomials in the number field sieve

    Get PDF
    The general number field sieve (GNFS) is the most efficient algorithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the chosen polynomials in polynomial selection can be modelled in terms of size and root properties. In this paper, we describe some algorithms for selecting polynomials with very good root properties.Comment: 16 pages, 18 reference

    Discrete logarithm computations over finite fields using Reed-Solomon codes

    Get PDF
    Cheng and Wan have related the decoding of Reed-Solomon codes to the computation of discrete logarithms over finite fields, with the aim of proving the hardness of their decoding. In this work, we experiment with solving the discrete logarithm over GF(q^h) using Reed-Solomon decoding. For fixed h and q going to infinity, we introduce an algorithm (RSDL) needing O (h! q^2) operations over GF(q), operating on a q x q matrix with (h+2) q non-zero coefficients. We give faster variants including an incremental version and another one that uses auxiliary finite fields that need not be subfields of GF(q^h); this variant is very practical for moderate values of q and h. We include some numerical results of our first implementations

    Solving discrete logarithms on a 170-bit MNT curve by pairing reduction

    Get PDF
    Pairing based cryptography is in a dangerous position following the breakthroughs on discrete logarithms computations in finite fields of small characteristic. Remaining instances are built over finite fields of large characteristic and their security relies on the fact that the embedding field of the underlying curve is relatively large. How large is debatable. The aim of our work is to sustain the claim that the combination of degree 3 embedding and too small finite fields obviously does not provide enough security. As a computational example, we solve the DLP on a 170-bit MNT curve, by exploiting the pairing embedding to a 508-bit, degree-3 extension of the base field.Comment: to appear in the Lecture Notes in Computer Science (LNCS

    The fluctuations in the number of points of smooth plane curves over finite fields

    Get PDF
    In this note, we study the fluctuations in the number of points of smooth projective plane curves over finite fields Fq\mathbb{F}_q as qq is fixed and the genus varies. More precisely, we show that these fluctuations are predicted by a natural probabilistic model, in which the points of the projective plane impose independent conditions on the curve. The main tool we use is a geometric sieving process introduced by Poonen.Comment: 12 page

    Discrete logarithms in curves over finite fields

    Get PDF
    A survey on algorithms for computing discrete logarithms in Jacobians of curves over finite fields

    Bayesian adaptation

    Full text link
    In the need for low assumption inferential methods in infinite-dimensional settings, Bayesian adaptive estimation via a prior distribution that does not depend on the regularity of the function to be estimated nor on the sample size is valuable. We elucidate relationships among the main approaches followed to design priors for minimax-optimal rate-adaptive estimation meanwhile shedding light on the underlying ideas.Comment: 20 pages, Propositions 3 and 5 adde
    • …
    corecore