12 research outputs found

    Protocolos de pertenencia a grupos para entornos dinámicos

    Full text link
    Los sistemas distribuidos gozan hoy de fundamental importancia entre los sistemas de información, debido a sus potenciales capacidades de tolerancia a fallos y escalabilidad, que permiten su adecuación a las aplicaciones actuales, crecientemente exigentes. Por otra parte, el desarrollo de aplicaciones distribuidas presenta también dificultades específicas, precisamente para poder ofrecer la escalabilidad, tolerancia a fallos y alta disponibilidad que constituyen sus ventajas. Por eso es de gran utilidad contar con componentes distribuidas específicamente diseñadas para proporcionar, a más bajo nivel, un conjunto de servicios bien definidos, sobre los cuales las aplicaciones de más alto nivel puedan construir su propia semántica más fácilmente. Es el caso de los servicios orientados a grupos, de uso muy extendido por las aplicaciones distribuidas, a las que permiten abstraerse de los detalles de las comunicaciones. Tales servicios proporcionan primitivas básicas para la comunicación entre dos miembros del grupo o, sobre todo, las transmisiones de mensajes a todo el grupo, con garantías concretas. Un caso particular de servicio orientado a grupos lo constituyen los servicios de pertenencia a grupos, en los cuales se centra esta tesis. Los servicios de pertenencia a grupos proporcionan a sus usuarios una imagen del conjunto de procesos o máquinas del sistema que permanecen simultáneamente conectados y correctos. Es más, los diversos participantes reciben esta información con garantías concretas de consistencia. Así pues, los servicios de pertenencia constituyen una componente fundamental para el desarrollo de sistemas de comunicación a grupos y otras aplicaciones distribuidas. El problema de pertenencia a grupos ha sido ampliamente tratado en la literatura tanto desde un punto de vista teórico como práctico, y existen múltiples realizaciones de servicios de pertenencia utilizables. A pesar de ello, la definición del problema no es única. Por el contrario, dependienBañuls Polo, MDC. (2006). Protocolos de pertenencia a grupos para entornos dinámicos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1886Palanci

    Crash recovery with partial amnesia failure model issues

    Full text link
    Replicated systems are a kind of distributed systems whose main goal is to ensure that computer systems are highly available, fault tolerant and provide high performance. One of the last trends in replication techniques managed by replication protocols, make use of Group Communication Sys- tem, and more specifically of the communication primitive atomic broadcast for developing more eficient replication protocols. An important aspect in these systems consists in how they manage the disconnection of nodes {which degrades their service{ and the connec- tion/reconnection of nodes for maintaining their original support. This task is delegated in replicated systems to recovery protocols. How it works de- pends specially on the failure model adopted. A model commonly used for systems managing large state is the crash-recovery with partial amnesia be- cause it implies short recovery periods. But, assuming it implies arising several problems. Most of them have been already solved in the literature: view management, abort of local transactions started in crashed nodes { when referring to transactional environments{ or for example the reinclu- sion of new nodes to the replicated system. Anyway, there is one problem related to the assumption of this second failure model that has not been completely considered: the amnesia phenomenon. Phenomenon that can lead to inconsistencies if it is not correctly managed. This work presents this inconsistency problem due to the amnesia and formalizes it, de ning the properties that must be ful lled for avoiding it and de ning possible solutions. Besides, it also presents and formalizes an inconsistency problem {due to the amnesia{ which appears under a speci c sequence of events allowed by the majority partition progress condition that will imply to stop the system, proposing the properties for overcoming it and proposing di erent solutions. As a consequence it proposes a new majority partition progress condition. In the sequel there is deDe Juan Marín, R. (2008). Crash recovery with partial amnesia failure model issues [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/3302Palanci

    Specification of Replication Techniques, Semi-Passive Replication, and Lazy consensus*

    Get PDF
    This paper brings the following three main contributions: a hierarchy of specifications for replication techniques, semi-passive replication, and Lazy Consensus. Based on the definition of the Generic Replication problem, we difine two families of replication techniques: replication with parsimonious processing (e.g., passive replication), and replication with redundant processing (e.g., active replication). This helps relate replication techniques to each other. We define a novel replication technique with parsimonious processing, called semi-passive replication, for which we also give an algorithm. The most significant aspect of semi-passive replication is that it requires a weaker system model than existing techniques of the same family. We difine a variant of the Consensus problem, called Lazy Consensus, upon which our semi-passive replication algorithm is based. The main difference between Consensus and Lazy Consensus is a property of laziness which requires that initial values are computed only when they are actually needed

    Practical database replication

    Get PDF
    Tese de doutoramento em InformáticaSoftware-based replication is a cost-effective approach for fault-tolerance when combined with commodity hardware. In particular, shared-nothing database clusters built upon commodity machines and synchronized through eager software-based replication protocols have been driven by the distributed systems community in the last decade. The efforts on eager database replication, however, stem from the late 1970s with initial proposals designed by the database community. From that time, we have the distributed locking and atomic commitment protocols. Briefly speaking, before updating a data item, all copies are locked through a distributed lock, and upon commit, an atomic commitment protocol is responsible for guaranteeing that the transaction’s changes are written to a non-volatile storage at all replicas before committing it. Both these processes contributed to a poor performance. The distributed systems community improved these processes by reducing the number of interactions among replicas through the use of group communication and by relaxing the durability requirements imposed by the atomic commitment protocol. The approach requires at most two interactions among replicas and disseminates updates without necessarily applying them before committing a transaction. This relies on a high number of machines to reduce the likelihood of failures and ensure data resilience. Clearly, the availability of commodity machines and their increasing processing power makes this feasible. Proving the feasibility of this approach requires us to build several prototypes and evaluate them with different workloads and scenarios. Although simulation environments are a good starting point, mainly those that allow us to combine real (e.g., replication protocols, group communication) and simulated-code (e.g., database, network), full-fledged implementations should be developed and tested. Unfortunately, database vendors usually do not provide native support for the development of third-party replication protocols, thus forcing protocol developers to either change the database engines, when the source code is available, or construct in the middleware server wrappers that intercept client requests otherwise. The former solution is hard to maintain as new database releases are constantly being produced, whereas the latter represents a strenuous development effort as it requires us to rebuild several database features at the middleware. Unfortunately, the group-based replication protocols, optimistic or conservative, that had been proposed so far have drawbacks that present a major hurdle to their practicability. The optimistic protocols make it difficult to commit transactions in the presence of hot-spots, whereas the conservative protocols have a poor performance due to concurrency issues. In this thesis, we propose using a generic architecture and programming interface, titled GAPI, to facilitate the development of different replication strategies. The idea consists of providing key extensions to multiple DBMSs (Database Management Systems), thus enabling a replication strategy to be developed once and tested on several databases that have such extensions, i.e., those that are replication-friendly. To tackle the aforementioned problems in groupbased replication protocols, we propose using a novel protocol, titled AKARA. AKARA guarantees fairness, and thus all transactions have a chance to commit, and ensures great performance while exploiting parallelism as provided by local database engines. Finally, we outline a simple but comprehensive set of components to build group-based replication protocols and discuss key points in its design and implementation.A replicação baseada em software é uma abordagem que fornece um bom custo benefício para tolerância a falhas quando combinada com hardware commodity. Em particular, os clusters de base de dados “shared-nothing” construídos com hardware commodity e sincronizados através de protocolos “eager” têm sido impulsionados pela comunidade de sistemas distribuídos na última década. Os primeiros esforços na utilização dos protocolos “eager”, decorrem da década de 70 do século XX com as propostas da comunidade de base de dados. Dessa época, temos os protocolos de bloqueio distribuído e de terminação atómica (i.e. “two-phase commit”). De forma sucinta, antes de actualizar um item de dados, todas as cópias são bloqueadas através de um protocolo de bloqueio distribuído e, no momento de efetivar uma transacção, um protocolo de terminação atómica é responsável por garantir que as alterações da transacção são gravadas em todas as réplicas num sistema de armazenamento não-volátil. No entanto, ambos os processos contribuem para um mau desempenho do sistema. A comunidade de sistemas distribuídos melhorou esses processos, reduzindo o número de interacções entre réplicas, através do uso da comunicação em grupo e minimizando a rigidez os requisitos de durabilidade impostos pelo protocolo de terminação atómica. Essa abordagem requer no máximo duas interacções entre as réplicas e dissemina actualizações sem necessariamente aplicá-las antes de efectivar uma transacção. Para funcionar, a solução depende de um elevado número de máquinas para reduzirem a probabilidade de falhas e garantir a resiliência de dados. Claramente, a disponibilidade de hardware commodity e o seu poder de processamento crescente tornam essa abordagem possível. Comprovar a viabilidade desta abordagem obriga-nos a construir vários protótipos e a avaliálos com diferentes cargas de trabalho e cenários. Embora os ambientes de simulação sejam um bom ponto de partida, principalmente aqueles que nos permitem combinar o código real (por exemplo, protocolos de replicação, a comunicação em grupo) e o simulado (por exemplo, base de dados, rede), implementações reais devem ser desenvolvidas e testadas. Infelizmente, os fornecedores de base de dados, geralmente, não possuem suporte nativo para o desenvolvimento de protocolos de replicação de terceiros, forçando os desenvolvedores de protocolo a mudar o motor de base de dados, quando o código fonte está disponível, ou a construir no middleware abordagens que interceptam as solicitações do cliente. A primeira solução é difícil de manter já que novas “releases” das bases de dados estão constantemente a serem produzidas, enquanto a segunda representa um desenvolvimento árduo, pois obriga-nos a reconstruir vários recursos de uma base de dados no middleware. Infelizmente, os protocolos de replicação baseados em comunicação em grupo, optimistas ou conservadores, que foram propostos até agora apresentam inconvenientes que são um grande obstáculo à sua utilização. Com os protocolos optimistas é difícil efectivar transacções na presença de “hot-spots”, enquanto que os protocolos conservadores têm um fraco desempenho devido a problemas de concorrência. Nesta tese, propomos utilizar uma arquitetura genérica e uma interface de programação, intitulada GAPI, para facilitar o desenvolvimento de diferentes estratégias de replicação. A ideia consiste em fornecer extensões chaves para múltiplos SGBDs (Database Management Systems), permitindo assim que uma estratégia de replicação possa ser desenvolvida uma única vez e testada em várias bases de dados que possuam tais extensões, ou seja, aquelas que são “replicationfriendly”. Para resolver os problemas acima referidos nos protocolos de replicação baseados em comunicação em grupo, propomos utilizar um novo protocolo, intitulado AKARA. AKARA garante a equidade, portanto, todas as operações têm uma oportunidade de serem efectivadas, e garante um excelente desempenho ao tirar partido do paralelismo fornecido pelos motores de base de dados. Finalmente, propomos um conjunto simples, mas abrangente de componentes para construir protocolos de replicação baseados em comunicação em grupo e discutimos pontoschave na sua concepção e implementação

    Evaluating the performance of distributed agreement algorithms:tools, methodology and case studies

    Get PDF
    Nowadays, networked computers are present in most aspects of everyday life. Moreover, essential parts of society come to depend on distributed systems formed of networked computers, thus making such systems secure and fault tolerant is a top priority. If the particular fault tolerance requirement is high availability, replication of components is a natural choice. Replication is a difficult problem as the state of the replicas must be kept consistent even if some replicas fail, and because in distributed systems, relying on centralized control or a certain timing behavior is often not feasible. Replication in distributed systems is often implemented using group communication. Group communication is concerned with providing high-level multipoint communication primitives and the associated tools. Most often, an emphasis is put on tolerating crash failures of processes. At the heart of most communication primitives lies an agreement problem: the members of a group must agree on things like the set of messages to be delivered to the application, the delivery order of messages, or the set of processes that crashed. A lot of algorithms to solve agreement problems have been proposed and their correctness proven. However, performance aspects of agreement algorithms have been somewhat neglected, for a variety of reasons: the lack of theoretical and practical tools to help performance evaluation, and the lack of well-defined benchmarks for agreement algorithms. Also, most performance studies focus on analyzing failure free runs only. In our view, the limited understanding of performance aspects, in both failure free scenarios and scenarios with failure handling, is an obstacle for adopting agreement protocols in practice, and is part of the explanation why such protocols are not in widespread use in the industry today. The main goal of this thesis is to advance the state of the art in this field. The thesis has major contributions in three domains: new tools, methodology and performance studies. As for new tools, a simulation and prototyping framework offers a practical tool, and some new complexity metrics a theoretical tool for the performance evaluation of agreement algorithms. As for methodology, the thesis proposes a set of well-defined benchmarks for atomic broadcast algorithms (such algorithms are important as they provide the basis for a number of replication techniques). Finally, three studies are presented that investigate important performance issues with agreement algorithms. The prototyping and simulation framework simplifies the tedious task of developing algorithms based on message passing, the communication model that most agreement algorithms are written for. In this framework, the same implementation can be reused for simulations and performance measurements on a real network. This characteristic greatly eases the task of validating simulation results with measurements (or vice versa). As for theoretical tools, we introduce two complexity metrics that predict performance with more accuracy than the traditional time and message complexity metrics. The key point is that our metrics take account for resource contention, both on the network and the hosts; resource contention is widely recognized as having a major impact on the performance of distributed algorithms. Extensive validation studies have been conducted. Currently, no widely accepted benchmarks exist for agreement algorithms or group communication toolkits, which makes comparing performance results from different sources difficult. In an attempt to consolidate the situation, we define a number of benchmarks for atomic broadcast. Our benchmarks include well-defined metrics, workloads and failure scenarios (faultloads). The use of the benchmarks is illustrated in two detailed case studies. Two widespread mechanisms for handling failures are unreliable failure detectors which provide inconsistent information about failures, and a group membership service which provides consistent information about failures, respectively. We analyze the performance tradeoffs of these two techniques, by comparing the performance of two atomic broadcast algorithms designed for an asynchronous system. Based on our results, we advocate a combined use of the two approaches to failure handling. In another case study, we compare two consensus algorithms designed for an asynchronous system. The two algorithms differ in how they coordinate the decision process: the one uses a centralized and the other a decentralized communication schema. Our results show that the performance tradeoffs are highly affected by a number of characteristics of the environment, like the availability of multicast and the amount of contention on the hosts versus the amount of contention on the network. Famous theoretical results state that a lot of important agreement problems are not solvable in the asynchronous system model. In our third case study, we investigate how these results are relevant for implementations of a replicated service, by conducting an experiment in a local area network. We exposed a replicated server to extremely high loads and required that the underlying failure detection service detects crashes very fast; the latter is important as the theoretical results are based on the impossibility of reliable failure detection. We found that our replicated server continued working even with the most extreme settings. We discuss the reasons for the robustness of our replicated server

    A framework for real time collaborative editing in a mobile replicated architecture

    Get PDF
    Mobile collaborative work is a developing sub-area of Computer Supported Collaborative Work (CSCW). The future of this field will be marked by a significant increase in mobile device usage as a tool for co-workers to cooperate, collaborate and work on a shared workspace in real-time to produce artefacts such as diagrams, text and graphics regardless of their geographical locations. A real-time collaboration editor can utilise a centralised or a replicated architecture. In a centralised architecture, a central server holds the shared document as well as manages the various aspects of the collaboration, such as the document consistency, ordering of updates, resolving conflicts and the session membership. Every user's action needs to be propagated to the central server, and the server will apply it to the document to ensure it results in the intended document state. Alternatively, a decentralised or replicated architecture can be used where there is no central server to store the shared document. Every participating site contains a copy of the shared document (replica) to work on separately. Using this architecture, every user's action needs to be broadcast to all participating sites so each site can update their replicas accordingly. The replicated architecture is attractive for such applications, especially in wireless and ad-hoc networks, since it does not rely on a central server and a user can continue to work on his or her own local document replica even during disconnection period. However, in the absence of a dedicated server, the collaboration is managed by individual devices. This presents challenges to implement collaborative editors in a replicated architecture, especially in a mobile network which is characterised by limited resource reliability and availability. This thesis addresses challenges and requirements to implement group editors in wireless ad-hoc network environments where resources are scarce and the network is significantly less stable and less robust than wired fixed networks. The major contribution of this thesis is a proposed framework that comprises the proposed algorithms and techniques to allow each device to manage the important aspects of collaboration such as document consistency, conflict handling and resolution, session membership and document partitioning. Firstly, the proposed document consistency algorithm ensures the document replicas held by each device are kept consistent despite the concurrent updates by the collaboration participants while taking into account the limited resource of mobile devices and mobile networks. Secondly, the proposed conflict management technique provides users with conflict status and information so that users can handle and resolve conflicts appropriately. Thirdly, the proposed membership management algorithm ensures all participants receive all necessary updates and allows users to join a currently active collaboration session. Fourthly, the proposed document partitioning algorithm provides flexibility for users to work on selected parts of the document and reduces the resource consumption. Finally, a basic implementation of the framework is presented to show how it can support a real time collaboration scenario

    Semantically reliable group communication

    Get PDF
    A utilização de computadores e redes de transmissão de dados em diversas aplicações do quotidiano, torna desejável a adopção de técnicas de tolerância a faltas em sistemas baseados em hardware e software não especializados. A comunicação em grupo é, neste contexto, uma tecnologia particularmente atraente, pois oferece ao programador garantias de fiabilidade que simplificam significativamente a aplicação de técnicas de tolerância a faltas. No entanto, a experiência tem mostrado que a concretização deste modelo em sistemas heterogéneos e de grande escala levanta problemas de desempenho. Embora as limitações de desempenho possam ser evitadas através de um relaxamento das garantias de fiabilidade, os protocolos resultantes são normalmente menos úteis, nomeadamente, na replicação com coerência forte. O desafio reside pois no relaxamento das garantias de fiabilidade sem deixar de oferecer um modelo adequado à programação de aplicações tolerantes a faltas. Esta dissertação estuda modelos e mecanismos que permitem conciliar as vantagens da comunicação em grupo com o elevado desempenho, recorrendo para isso ao enfraquecimento selectivo das garantias oferecidas pelos protocolos. A nossa proposta consiste no uso pelo protocolo de informação sobre a semântica das mensagens, por forma a escolher quais delas têm que ser fiavelmente transmitidas, daí a fiabilidade semântica. Em diversas aplicações, algumas mensagens revogam ou transmitem implicitamente outras mensagens enviadas recentemente, tornando-as obsoletas durante a sua transmissão. Ao omitir apenas as mensagens obsoletas, o desempenho pode ser melhorado sem impacto na correcção da aplicação. São apresentados as especificações e os algoritmos de um conjunto protocolos de comunicação em grupo com fiabilidade semântica, incluindo ordenação e sincronismo virtual. Os protocolos são então avaliados com um modelo analítico, um modelo de simulação e um protótipo. A discussão de uma aplicação concreta ilustra a interface de programação e o desempenho resultanteCurrent usage of computers and data communication networks for a variety of daily tasks, calls for widespread deployment of fault tolerance techniques with inexpensive off-the-shelf hardware and software. Group communication is in this context a particularly appealing technology, as it provides to the application programmer reliability guarantees that highly simplify many fault tolerance techniques. It has however been reported that the performance of group communication toolkits in large and heterogeneous systems is frequently disappointing. Although this can be overcome by relaxing reliability guarantees, the resulting protocol is often much less useful than group communication, in particular, for strong consistent replication. The challenge is thus to relax reliability and still provide a convenient set of guarantees for fault tolerant programming. This thesis addresses models and mechanisms that by selectively relaxing reliability guarantees, offer both the convenience of group communication for fault tolerant programming and high performance. The key to our proposal is to use knowledge about the semantics of messages exchanged to determine which messages need to be reliably delivered, hence semantic reliability. In many applications, some messages implicitly convey or overwrite other messages sent recently before, making them obsolete while still in transit. By omitting only the delivery of obsolete messages, performance can be improved without impact on the correctness of the application. Specifications and algorithms for a complete semantically reliable group communication protocol suite are introduced, encompassing ordered and view synchronous multicast. The protocols are then evaluated with analytical and simulation models and with a prototype implementation. The discussion of a concrete application illustrates the resulting programming interface and performance.Fundação para a Ciência e a Tecnologia - SHIFT (POSI/32869/CHS/2000)

    Agreement-related problems:from semi-passive replication to totally ordered broadcast

    Get PDF
    Agreement problems constitute a fundamental class of problems in the context of distributed systems. All agreement problems follow a common pattern: all processes must agree on some common decision, the nature of which depends on the specific problem. This dissertation mainly focuses on three important agreements problems: Replication, Total Order Broadcast, and Consensus. Replication is a common means to introduce redundancy in a system, in order to improve its availability. A replicated server is a server that is composed of multiple copies so that, if one copy fails, the other copies can still provide the service. Each copy of the server is called a replica. The replicas must all evolve in manner that is consistent with the other replicas. Hence, updating the replicated server requires that every replica agrees on the set of modifications to carry over. There are two principal replication schemes to ensure this consistency: active replication and passive replication. In Total Order Broadcast, processes broadcast messages to all processes. However, all messages must be delivered in the same order. Also, if one process delivers a message m, then all correct processes must eventually deliver m. The problem of Consensus gives an abstraction to most other agreement problems. All processes initiate a Consensus by proposing a value. Then, all processes must eventually decide the same value v that must be one of the proposed values. These agreement problems are closely related to each other. For instance, Chandra and Toueg [CT96] show that Total Order Broadcast and Consensus are equivalent problems. In addition, Lamport [Lam78] and Schneider [Sch90] show that active replication needs Total Order Broadcast. As a result, active replication is also closely related to the Consensus problem. The first contribution of this dissertation is the definition of the semi-passive replication technique. Semi-passive replication is a passive replication scheme based on a variant of Consensus (called Lazy Consensus and also defined here). From a conceptual point of view, the result is important as it helps to clarify the relation between passive replication and the Consensus problem. In practice, this makes it possible to design systems that react more quickly to failures. The problem of Total Order Broadcast is well-known in the field of distributed systems and algorithms. In fact, there have been already more than fifty algorithms published on the problem so far. Although quite similar, it is difficult to compare these algorithms as they often differ with respect to their actual properties, assumptions, and objectives. The second main contribution of this dissertation is to define five classes of total order broadcast algorithms, and to relate existing algorithms to those classes. The third contribution of this dissertation is to compare the expected performance of the various classes of total order broadcast algorithms. To achieve this goal, we define a set of metrics to predict the performance of distributed algorithms

    The CORBA object group service:a service approach to object groups in CORBA

    Get PDF
    Distributed computing is one of the major trends in the computer industry. As systems become more distributed, they also become more complex and have to deal with new kinds of problems, such as partial crashes and link failures. To answer the growing demand in distributed technologies, several middleware environments have emerged during the last few years. These environments however lack support for "one-to-many" communication primitives; such primitives greatly simplify the development of several types of applications that have requirements for high availability, fault tolerance, parallel processing, or collaborative work. One-to-many interactions can be provided by group communication. It manages groups of objects and provides primitives for sending messages to all members of a group, with various reliability and ordering guarantees. A group constitutes a logical addressing facility: messages can be issued to a group without having to know the number, identity, or location of individual members. The notion of group has proven to be very useful for providing high availability through replication: a set of replicas constitutes a group, but are viewed by clients as a single entity in the system. This thesis aims at studying and proposing solutions to the problem of object group support in object-based middleware environments. It surveys and evaluates different approaches to this problem. Based on this evaluation, we propose a system model and an open architecture to add support for object groups to the CORBA middle- ware environment. In doing so, we provide the application developer with powerful group primitives in the context of a standard object-based environment. This thesis contributes to ongoing standardization efforts that aim to support fault tolerance in CORBA, using entity redundancy. The group architecture proposed in this thesis — the Object Group Service (OGS) — is based on the concept of component integration. It consists of several distinct components that provide various facilities for reliable distributed computing and that are reusable in isolation. Group support is ultimately provided by combining these components. OGS defines an object-oriented framework of CORBA components for reliable distributed systems. The OGS components include a group membership service, which keeps track of the composition of object groups, a group multicast service, which provides delivery of messages to all group members, a consensus service, which allows several CORBA objects to resolve distributed agreement problems, and a monitoring service, which provides distributed failure detection mechanisms. OGS includes support for dynamic group membership and for group multicast with various reliability and ordering guarantees. It defines interfaces for active and primary-backup replication. In addition, OGS proposes several execution styles and various levels of transparency. A prototype implementation of OGS has been realized in the context of this thesis. This implementation is available for two commercial ORBs (Orbix and VisiBroker). It relies solely on the CORBA specification, and is thus portable to any compliant ORB. Although the main theme of this thesis deals with system architecture, we have developed some original algorithms to implement group support in OGS. We analyze these algorithms and implementation choices in this dissertation, and we evaluate them in terms of efficiency. We also illustrate the use of OGS through example applications

    From cluster databases to cloud storage: Providing transactional support on the cloud

    Get PDF
    Durant les últimes tres dècades, les limitacions tecnològiques (com per exemple la capacitat dels dispositius d'emmagatzematge o l'ample de banda de les xarxes de comunicació) i les creixents demandes dels usuaris (estructures d'informació, volums de dades) han conduït l'evolució de les bases de dades distribuïdes. Des dels primers repositoris de dades per arxius plans que es van desenvolupar en la dècada dels vuitanta, s'han produït importants avenços en els algoritmes de control de concurrència, protocols de replicació i en la gestió de transaccions. No obstant això, els reptes moderns d'emmagatzematge de dades que plantegen el Big Data i el cloud computing—orientats a millorar la limitacions pel que fa a escalabilitat i elasticitat de les bases de dades estàtiques—estan empenyent als professionals a relaxar algunes propietats importants dels sistemes transaccionals clàssics, cosa que exclou a diverses aplicacions les quals no poden encaixar en aquesta estratègia degut a la seva alta dependència transaccional. El propòsit d'aquesta tesi és abordar dos reptes importants encara latents en el camp de les bases de dades distribuïdes: (1) les limitacions pel que fa a escalabilitat dels sistemes transaccionals i (2) el suport transaccional en repositoris d'emmagatzematge en el núvol. Analitzar les tècniques tradicionals de control de concurrència i de replicació, utilitzades per les bases de dades clàssiques per suportar transaccions, és fonamental per identificar les raons que fan que aquests sistemes degradin el seu rendiment quan el nombre de nodes i / o quantitat de dades creix. A més, aquest anàlisi està orientat a justificar el disseny dels repositoris en el núvol que deliberadament han deixat de banda el suport transaccional. Efectivament, apropar el paradigma de l'emmagatzematge en el núvol a les aplicacions que tenen una forta dependència en les transaccions és fonamental per a la seva adaptació als requeriments actuals pel que fa a volums de dades i models de negoci. Aquesta tesi comença amb la proposta d'un simulador de protocols per a bases de dades distribuïdes estàtiques, el qual serveix com a base per a la revisió i comparativa de rendiment dels protocols de control de concurrència i les tècniques de replicació existents. Pel que fa a la escalabilitat de les bases de dades i les transaccions, s'estudien els efectes que té executar diferents perfils de transacció sota diferents condicions. Aquesta anàlisi contínua amb una revisió dels repositoris d'emmagatzematge de dades en el núvol existents—que prometen encaixar en entorns dinàmics que requereixen alta escalabilitat i disponibilitat—, el qual permet avaluar els paràmetres i característiques que aquests sistemes han sacrificat per tal de complir les necessitats actuals pel que fa a emmagatzematge de dades a gran escala. Per explorar les possibilitats que ofereix el paradigma del cloud computing en un escenari real, es presenta el desenvolupament d'una arquitectura d'emmagatzematge de dades inspirada en el cloud computing la qual s’utilitza per emmagatzemar la informació generada en les Smart Grids. Concretament, es combinen les tècniques de replicació en bases de dades transaccionals i la propagació epidèmica amb els principis de disseny usats per construir els repositoris de dades en el núvol. Les lliçons recollides en l'estudi dels protocols de replicació i control de concurrència en el simulador de base de dades, juntament amb les experiències derivades del desenvolupament del repositori de dades per a les Smart Grids, desemboquen en el que hem batejat com Epidemia: una infraestructura d'emmagatzematge per Big Data concebuda per proporcionar suport transaccional en el núvol. A més d'heretar els beneficis dels repositoris en el núvol en quant a escalabilitat, Epidemia inclou una capa de gestió de transaccions que reenvia les transaccions dels clients a un conjunt jeràrquic de particions de dades, cosa que permet al sistema oferir diferents nivells de consistència i adaptar elàsticament la seva configuració a noves demandes de càrrega de treball. Finalment, els resultats experimentals posen de manifest la viabilitat de la nostra contribució i encoratgen als professionals a continuar treballant en aquesta àrea.Durante las últimas tres décadas, las limitaciones tecnológicas (por ejemplo la capacidad de los dispositivos de almacenamiento o el ancho de banda de las redes de comunicación) y las crecientes demandas de los usuarios (estructuras de información, volúmenes de datos) han conducido la evolución de las bases de datos distribuidas. Desde los primeros repositorios de datos para archivos planos que se desarrollaron en la década de los ochenta, se han producido importantes avances en los algoritmos de control de concurrencia, protocolos de replicación y en la gestión de transacciones. Sin embargo, los retos modernos de almacenamiento de datos que plantean el Big Data y el cloud computing—orientados a mejorar la limitaciones en cuanto a escalabilidad y elasticidad de las bases de datos estáticas—están empujando a los profesionales a relajar algunas propiedades importantes de los sistemas transaccionales clásicos, lo que excluye a varias aplicaciones las cuales no pueden encajar en esta estrategia debido a su alta dependencia transaccional. El propósito de esta tesis es abordar dos retos importantes todavía latentes en el campo de las bases de datos distribuidas: (1) las limitaciones en cuanto a escalabilidad de los sistemas transaccionales y (2) el soporte transaccional en repositorios de almacenamiento en la nube. Analizar las técnicas tradicionales de control de concurrencia y de replicación, utilizadas por las bases de datos clásicas para soportar transacciones, es fundamental para identificar las razones que hacen que estos sistemas degraden su rendimiento cuando el número de nodos y/o cantidad de datos crece. Además, este análisis está orientado a justificar el diseño de los repositorios en la nube que deliberadamente han dejado de lado el soporte transaccional. Efectivamente, acercar el paradigma del almacenamiento en la nube a las aplicaciones que tienen una fuerte dependencia en las transacciones es crucial para su adaptación a los requerimientos actuales en cuanto a volúmenes de datos y modelos de negocio. Esta tesis empieza con la propuesta de un simulador de protocolos para bases de datos distribuidas estáticas, el cual sirve como base para la revisión y comparativa de rendimiento de los protocolos de control de concurrencia y las técnicas de replicación existentes. En cuanto a la escalabilidad de las bases de datos y las transacciones, se estudian los efectos que tiene ejecutar distintos perfiles de transacción bajo diferentes condiciones. Este análisis continua con una revisión de los repositorios de almacenamiento en la nube existentes—que prometen encajar en entornos dinámicos que requieren alta escalabilidad y disponibilidad—, el cual permite evaluar los parámetros y características que estos sistemas han sacrificado con el fin de cumplir las necesidades actuales en cuanto a almacenamiento de datos a gran escala. Para explorar las posibilidades que ofrece el paradigma del cloud computing en un escenario real, se presenta el desarrollo de una arquitectura de almacenamiento de datos inspirada en el cloud computing para almacenar la información generada en las Smart Grids. Concretamente, se combinan las técnicas de replicación en bases de datos transaccionales y la propagación epidémica con los principios de diseño usados para construir los repositorios de datos en la nube. Las lecciones recogidas en el estudio de los protocolos de replicación y control de concurrencia en el simulador de base de datos, junto con las experiencias derivadas del desarrollo del repositorio de datos para las Smart Grids, desembocan en lo que hemos acuñado como Epidemia: una infraestructura de almacenamiento para Big Data concebida para proporcionar soporte transaccional en la nube. Además de heredar los beneficios de los repositorios en la nube altamente en cuanto a escalabilidad, Epidemia incluye una capa de gestión de transacciones que reenvía las transacciones de los clientes a un conjunto jerárquico de particiones de datos, lo que permite al sistema ofrecer distintos niveles de consistencia y adaptar elásticamente su configuración a nuevas demandas cargas de trabajo. Por último, los resultados experimentales ponen de manifiesto la viabilidad de nuestra contribución y alientan a los profesionales a continuar trabajando en esta área.Over the past three decades, technology constraints (e.g., capacity of storage devices, communication networks bandwidth) and an ever-increasing set of user demands (e.g., information structures, data volumes) have driven the evolution of distributed databases. Since flat-file data repositories developed in the early eighties, there have been important advances in concurrency control algorithms, replication protocols, and transactions management. However, modern concerns in data storage posed by Big Data and cloud computing—related to overcome the scalability and elasticity limitations of classic databases—are pushing practitioners to relax some important properties featured by transactions, which excludes several applications that are unable to fit in this strategy due to their intrinsic transactional nature. The purpose of this thesis is to address two important challenges still latent in distributed databases: (1) the scalability limitations of transactional databases and (2) providing transactional support on cloud-based storage repositories. Analyzing the traditional concurrency control and replication techniques, used by classic databases to support transactions, is critical to identify the reasons that make these systems degrade their throughput when the number of nodes and/or amount of data rockets. Besides, this analysis is devoted to justify the design rationale behind cloud repositories in which transactions have been generally neglected. Furthermore, enabling applications which are strongly dependent on transactions to take advantage of the cloud storage paradigm is crucial for their adaptation to current data demands and business models. This dissertation starts by proposing a custom protocol simulator for static distributed databases, which serves as a basis for revising and comparing the performance of existing concurrency control protocols and replication techniques. As this thesis is especially concerned with transactions, the effects on the database scalability of different transaction profiles under different conditions are studied. This analysis is followed by a review of existing cloud storage repositories—that claim to be highly dynamic, scalable, and available—, which leads to an evaluation of the parameters and features that these systems have sacrificed in order to meet current large-scale data storage demands. To further explore the possibilities of the cloud computing paradigm in a real-world scenario, a cloud-inspired approach to store data from Smart Grids is presented. More specifically, the proposed architecture combines classic database replication techniques and epidemic updates propagation with the design principles of cloud-based storage. The key insights collected when prototyping the replication and concurrency control protocols at the database simulator, together with the experiences derived from building a large-scale storage repository for Smart Grids, are wrapped up into what we have coined as Epidemia: a storage infrastructure conceived to provide transactional support on the cloud. In addition to inheriting the benefits of highly-scalable cloud repositories, Epidemia includes a transaction management layer that forwards client transactions to a hierarchical set of data partitions, which allows the system to offer different consistency levels and elastically adapt its configuration to incoming workloads. Finally, experimental results highlight the feasibility of our contribution and encourage practitioners to further research in this area
    corecore