142 research outputs found

    MULTIMODAL ASSESSMENT OF CETACEAN CENTRAL NERVOUS AUDITORY PATHWAYS WITH EMPHASIS ON FORENSIC DIAGNOSTICS OF ACOUSTIC TRAUMA

    Get PDF
    Cetaceans encompass some of the world’s most enigmatic species, with one of their greatest adaptations to the marine environment being the ability to “see” by hearing. Their anatomy and behavior are fine-tuned to emit and respond to underwater sounds, which is why anthropogenic noise pollution is likely to affect them negatively. There are many effects of noise on living organisms, and while knowledge on their entire palette and interplay remain incomplete, evidence for insults ranging from acoustic trauma over behavioral changes, to masking and stress, is accumulating. Humans are subject to peak interest in terms of medical research on noise-induced hearing loss. As major health concerns can be expected across species, addressing this problem in free-ranging cetacean populations will lead to a more sustainable management of marine ecosystems, more effective and balanced policies, and successes in conservation. While progress has been made in behavioral monitoring, electrophysiological hearing assessments and post-mortem examination of the inner ear of cetaceans, but very little is known about the neurochemical baseline and neuropathology of their central auditory pathways. In the present work, we reviewed the known effects of sound on cetaceans in both wild and managed settings and explored the value of animal models of neurodegenerative disease. We began by evaluating a row of antibodies associated with neurodegeneration in a more readily available species, the dog, where acute neurological insult could be derived from clinical history. We then set out to systematically validate a key panel of protein biomarkers for the assessment of similar neurodegenerative processes of the cetacean central nervous system. For this, we developed protocols to adequately sample cetacean auditory nuclei, optimized the immunohistochemical workflow, and used Western blot and alignment of protein sequences between the antigen targeted by our antibodies and the dolphin proteome. A Histoscore was used to semi-quantitively categorize immunoreactivity patterns and dolphins by age and presence of pathology. First results indicated significant differences both between sick and healthy, and young and old animals. We then expanded our list of validated antibodies for use in the bottlenose dolphin and the techniques used to assess them in a multimodal, quantitative way. 7T-MRI and stereology were implemented to assess the neuronal, axonal, glial and fiber tract counts in the inferior colliculus and ventral cochlear nucleus of a healthy bottlenose dolphin, which created a baseline understanding of protein expression in these structures, and the influence of tissue processing. This will make a valuable comparison for when positive controls of acoustic trauma would become available. Furthermore, we explored the connectome and neuronal morphology of auditory nuclei and experimented with probe designs and machine learning algorithms to quantify structures of interest. Comparisons with pathological human brains revealed similarities in the configuration of extracellular matrix components to those of a healthy dolphin, in line with existing knowledge on the tolerance to hypoxia in these diving animals. This could have interesting implications in future investigation of the evolutionary development of marine mammal brains, as well as help diversify out-of-the-box approaches to researching human neurodegenerative disease, as is being done with hibernating species. The data and methodologies described herein contribute to the knowledge on neurochemical signature of the cetacean central nervous system. They are intended to facilitate understanding of auditory and non-auditory pathology and build an evidence-based backbone to future policies regarding noise and other form of anthropogenic threats to the marine environment.Cetaceans encompass some of the world’s most enigmatic species, with one of their greatest adaptations to the marine environment being the ability to “see” by hearing. Their anatomy and behavior are fine-tuned to emit and respond to underwater sounds, which is why anthropogenic noise pollution is likely to affect them negatively. There are many effects of noise on living organisms, and while knowledge on their entire palette and interplay remain incomplete, evidence for insults ranging from acoustic trauma over behavioral changes, to masking and stress, is accumulating. Humans are subject to peak interest in terms of medical research on noise-induced hearing loss. As major health concerns can be expected across species, addressing this problem in free-ranging cetacean populations will lead to a more sustainable management of marine ecosystems, more effective and balanced policies, and successes in conservation. While progress has been made in behavioral monitoring, electrophysiological hearing assessments and post-mortem examination of the inner ear of cetaceans, but very little is known about the neurochemical baseline and neuropathology of their central auditory pathways. In the present work, we reviewed the known effects of sound on cetaceans in both wild and managed settings and explored the value of animal models of neurodegenerative disease. We began by evaluating a row of antibodies associated with neurodegeneration in a more readily available species, the dog, where acute neurological insult could be derived from clinical history. We then set out to systematically validate a key panel of protein biomarkers for the assessment of similar neurodegenerative processes of the cetacean central nervous system. For this, we developed protocols to adequately sample cetacean auditory nuclei, optimized the immunohistochemical workflow, and used Western blot and alignment of protein sequences between the antigen targeted by our antibodies and the dolphin proteome. A Histoscore was used to semi-quantitively categorize immunoreactivity patterns and dolphins by age and presence of pathology. First results indicated significant differences both between sick and healthy, and young and old animals. We then expanded our list of validated antibodies for use in the bottlenose dolphin and the techniques used to assess them in a multimodal, quantitative way. 7T-MRI and stereology were implemented to assess the neuronal, axonal, glial and fiber tract counts in the inferior colliculus and ventral cochlear nucleus of a healthy bottlenose dolphin, which created a baseline understanding of protein expression in these structures, and the influence of tissue processing. This will make a valuable comparison for when positive controls of acoustic trauma would become available. Furthermore, we explored the connectome and neuronal morphology of auditory nuclei and experimented with probe designs and machine learning algorithms to quantify structures of interest. Comparisons with pathological human brains revealed similarities in the configuration of extracellular matrix components to those of a healthy dolphin, in line with existing knowledge on the tolerance to hypoxia in these diving animals. This could have interesting implications in future investigation of the evolutionary development of marine mammal brains, as well as help diversify out-of-the-box approaches to researching human neurodegenerative disease, as is being done with hibernating species. The data and methodologies described herein contribute to the knowledge on neurochemical signature of the cetacean central nervous system. They are intended to facilitate understanding of auditory and non-auditory pathology and build an evidence-based backbone to future policies regarding noise and other form of anthropogenic threats to the marine environment

    Investigation into olfactory memory in unique amnesia

    Get PDF
    Section A Section A presents a systematic literature search and narrative synthesis of the literature on long-term olfactory recognition memory in a healthy adult human population. Searches produced 18 studies, which were subject to quality appraisals. Results revealed that olfactory recognition memory was not persistent over time but rather declined due to increased false alarm rates. Studies largely employed forced-choice and alternative forced-choice recognition tasks in investigating olfactory recognition memory. Several covariates influencing the recall of odours were also identified. Overall findings deviated from previous literature but may be reflective of the limitations of this current review. Clinical implications and directions for future research are discussed. Section B Section B presents an observational case-control study. A clinical participant with unique, medically unexplained amnesia (SI) was compared to eight age and education-matched controls for performance on tests of olfactory recognition memory, implicit skills (mirror maze task), and a neuropsychological test battery (Short Parallel Assessments of Neuropsychology Status [SPANS]). SI performed at a similar level to control participants within his memory retention window of 1 waking-day, but by day 2 of testing (unlike controls) SI did not demonstrate any retained learning. Clinical implications and future directions for research are discussed

    Physiological underpinnings of healthy brain ageing

    Get PDF
    Changes in cerebral perfusion or metabolism can occur as a result of healthy ageing, and in conditions of impaired ageing such as mild cognitive impairment (MCI) or Alzheimer’s disease (AD). Overarchingly, this thesis aimed to explore physiological magnetic resonance imaging (MRI) measures to study both cerebral perfusion and metabolism in the healthy ageing brain. Specifically, arterial spin labelling (ASL) and functional magnetic resonance spectroscopy (1H-fMRS) were employed in the elucidation of healthy ageing. Investigation of cerebral functionality is clinically important, enabling understanding of healthy ageing and disease pathology beyond that provided by structural measures. Given the necessity for tightly-regulated tissue perfusion in the delivery of oxygen to the brain, assessment of brain perfusion can enable elucidation of related brain health. Firstly, this thesis focused on changes in brain perfusion within a cross-sectional retrospective cohort of healthy subjects. This study aimed to assess the utility of univariate and multivariate pattern analysis (MVPA) techniques, and determine whether spatial coefficient of variation (sCoV) measures – which provide a method for inferring spatial heterogeneity of blood flow from single post-label delay (PLD) ASL data – are more significantly associated with age than standard perfusion metrics (ml/100g/min values). The impact of data processing steps on quantification of perfusion was initially assessed. Particularly, the influence of partial volume effect (PVE) correction and how this affected quantification of cerebral perfusion was of interest. The relationship between measures of cerebral perfusion – in regions of interest, vascular territories, and grey matter – and age were assessed, before grey matter (GM) spatial covariance patterns were identified, with MVPA hypothesised to elucidate more subtle age-related change than univariate, voxel-wise methodology. The executive control network (ECN) was the only network exhibiting a significant decline in perfusion with age, after controlling for relevant covariates. Interestingly, whilst the PCA approach resulted in a pattern of both positive and negative associations with age across cerebral GM, the surviving clusters in voxel-wise approaches were deemed spurious. Five-fold cross validation of PCA findings was used to assess whether the resultant spatial covariance patterns were able to predict subject age. This prediction was successful, with related r2 values of between 0.5316 and 0.7297 (p < 0.001 for all), however validation of these findings in an unseen dataset is required. The utility of the sCoV metric was also compared with standard tissue perfusion values, finding that sCoV may be more closely associated with ageing than ml/100g/min in certain regions. Particularly, a significant increase in whole GM sCoV with age was notable, given the absence of significant changes in perfusion with age in the same region. Additionally, a MVPA approach was used to establish the complex unknown relationship between cerebral perfusion and the Montreal Cognitive Assessment (MoCA), before graph visualisation was used to further understand the regional relatedness of the spatial covariance pattern. PCA resulted in a model which provided a moderate explanation of the aforementioned relationship, but this may be improved by inclusion of additional covariates in subsequent work, such as those pertaining to genetic status, such as apolipoprotein E (APOE). This study also replicates an FDG PET cognitive resilience signature in an ASL cohort for the first time, with a trend towards declining perfusion with age found (p = .08). Lastly, as ageing is associated with metabolic failure in the brain, which is often investigated using methodology which employs ionising radiation, the final study was motivated to investigate possible metabolic markers of brain ageing which can be measured using MRI. Metabolic-functional coupling can be studied using functional stimulation, and functional magnetic resonance spectroscopy (fMRS) is perfectly poised to elucidate certain metabolic behaviour. Given the close relationship between glucose (Glc) – the key fuel for cerebral functionality – and lactate (Lac) metabolism, an optimised long echo time (TE) semi-localized by adiabatic selective refocusing (semi-LASER) sequence (TE=144ms) with optimised J-modulation selection at 7T was employed to assess the effects of age on the dynamic behaviour of Lac, and determine its absolute concentrations throughout the time course, whilst a visual stimulation paradigm was viewed. Successful quantification of metabolite concentrations – including Lac, tCr and tNAA – was achieved in both the young and old cohorts, and their Lac peaks clearly visually identifiable throughout the time course. A significant increase in Lac concentration was observed between rest and stimulation, but not stimulation and recovery, in the young cohort. No significant Lac time course changes were identified in the full old cohort. This thesis concluded by summarising and contextualising the key findings herein, and discussion of possible directions for further associated research. The findings of this thesis broaden the field of knowledge around healthy ageing, and therefore may contribute to subsequent translation efforts for both clinical diagnostics and treatment approaches

    Towards a fuller picture of the genetic architecture of neuropsychiatric disorders

    Get PDF

    Insulin regulates neurovascular coupling through astrocytes.

    Get PDF
    Circulating insulin enters the brain through mechanisms incompletely characterized. We now report that mice lacking insulin receptors (IR) in astrocytes (GFAP-IR KO mice) show blunted brain responses to insulin, uncoupling of brain blood flow with glucose uptake with concomitant changes in brain vasculature and glucose transporter 1 levels. IR-deficient astrocytes show increased expression of HIF-1α/VEGF, promote growth of co-cultured endothelial cells, display increased reactive oxidant species (ROS) and disturbed mitochondrial activity. Treatment with the antioxidant N-acetylcysteine (NAC), ameliorated high ROS levels, normalized angiogenic signaling, and mitochondrial function including mitochondrial glucose and oxygen sensors. In vivo treatment with NAC also normalized brain perfusion. Thus, insulin receptors in astrocytes regulate neuro-vascular coupling.pre-print4711 K

    Development of novel methods for obtaining robust dynamic susceptibility contrast magnetic resonance imaging biomarkers from diseased brain in children

    Get PDF
    Dynamic susceptibility contrast (DSC-) MRI is an important imaging technique from which estimates of perfusion measures including cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT) can be calculated. These perfusion measures can be used to indicate health in a range of diseases. However, acquisition protocol varies from centre-to-centre, which leads to variability in data quality between centres and limits the clinical applicability of DSC-MRI. Currently, the recommended process for assessing data quality is by eye, which is very time consuming and subjective between reviewers. In this work an automated processing pipeline for DSC-MRI was produced. Work to develop the pipeline demonstrated that data quality of DSC-MRI data can be assessed using machine learning classifiers, which were trained using metrics calculated from the data and the results of qualitative review. It also showed that it was possible to denoise the data using singular value decomposition (SVD) based methods, which were validated on a simulator and confirmed in patient data. The pipeline created was applied to a multicentre patient dataset where it demonstrated the importance of denoising DSC-MRI data in improving data quality and how data quality can vary with acquisition protocol. It was also applied to a single centre study of patients receiving differing treatments for brain tumours and suggested there are no significant changes in relative CBV (rCBV) in non-tumour brain between differing treatment groups. The pipeline developed during this work has wider applications in other imaging modalities and could be adapted to be applied to other perfusion imaging methods, such as dynamic contrast enhanced (DCE-) MRI, or any other imaging modality that involves analysis of a signal variation with time, such as computed tomography (CT) perfusion imaging or positron emission tomography (PET)

    Translation of quantitative MRI analysis tools for clinical neuroradiology application

    Get PDF
    Quantification of imaging features can assist radiologists by reducing subjectivity, aiding detection of subtle pathology, and increasing reporting consistency. Translation of quantitative image analysis techniques to clinical use is currently uncommon and challenging. This thesis explores translation of quantitative imaging support tools for clinical neuroradiology use. I have proposed a translational framework for development of quantitative imaging tools, using dementia as an exemplar application. This framework emphasises the importance of clinical validation, which is not currently prioritised. Aspects of the framework were then applied to four disease areas: hippocampal sclerosis (HS) as a cause of epilepsy; dementia; multiple sclerosis (MS) and gliomas. A clinical validation study for an HS quantitative report showed that when image interpreters used the report, they were more accurate and confident in their assessments, particularly for challenging bilateral cases. A similar clinical validation study for a dementia reporting tool found improved sensitivity for all image interpreters and increased assessment accuracy for consultant radiologists. These studies indicated benefits from quantitative reports that contextualise a patient’s results with appropriate normative reference data. For MS, I addressed a technical translational challenge by applying lesion and brain quantification tools to standard clinical image acquisitions which do not include a conventional T1-weighted sequence. Results were consistent with those from conventional sequence inputs and therefore I pursued this concept to establish a clinically applicable normative reference dataset for development of a quantitative reporting tool for clinical use. I focused on current radiology reporting of gliomas to establish which features are commonly missed and may be important for clinical management decisions. This informs both the potential utility of a quantitative report for gliomas and its design and content. I have identified numerous translational challenges for quantitative reporting and explored aspects of how to address these for several applications across clinical neuroradiology
    • …
    corecore