41 research outputs found

    A POWER INDEX BASED FRAMEWORKFOR FEATURE SELECTION PROBLEMS

    Get PDF
    One of the most challenging tasks in the Machine Learning context is the feature selection. It consists in selecting the best set of features to use in the training and prediction processes. There are several benefits from pruning the set of actually operational features: the consequent reduction of the computation time, often a better quality of the prediction, the possibility to use less data to create a good predictor. In its most common form, the problem is called single-view feature selection problem, to distinguish it from the feature selection task in Multi-view learning. In the latter, each view corresponds to a set of features and one would like to enact feature selection on each view, subject to some global constraints. A related problem in the context of Multi-View Learning, is Feature Partitioning: it consists in splitting the set of features of a single large view into two or more views so that it becomes possible to create a good predictor based on each view. In this case, the best features must be distributed between the views, each view should contain synergistic features, while features that interfere disruptively must be placed in different views. In the semi-supervised multi-view task known as Co-training, one requires also that each predictor trained on an individual view is able to teach something to the other views: in classification tasks for instance, one view should learn to classify unlabelled examples based on the guess provided by the other views. There are several ways to address these problems. A set of techniques is inspired by Coalitional Game Theory. Such theory defines several useful concepts, among which two are of high practical importance: the concept of power index and the concept of interaction index. When used in the context of feature selection, they take the following meaning: the power index is a (context-dependent) synthesis measure of the prediction\u2019s capability of a feature, the interaction index is a (context-dependent) synthesis measure of the interaction (constructive/disruptive interference) between two features: it can be used to quantify how the collaboration between two features enhances their prediction capabilities. An important point is that the powerindex of a feature is different from the predicting power of the feature in isolation: it takes into account, by a suitable averaging, the context, i.e. the fact that the feature is acting, together with other features, to train a model. Similarly, the interaction index between two features takes into account the context, by suitably averaging the interaction with all the other features. In this work we address both the single-view and the multi-view problems as follows. The single-view feature selection problem, is formalized as the problem of maximization of a pseudo-boolean function, i.e. a real valued set function (that maps sets of features into a performance metric). Since one has to enact a search over (a considerable portion of) the Boolean lattice (without any special guarantees, except, perhaps, positivity) the problem is in general NP-hard. We address the problem producing candidate maximum coalitions through the selection of the subset of features characterized by the highest power indices and using the coalition to approximate the actual maximum. Although the exact computation of the power indices is an exponential task, the estimates of the power indices for the purposes of the present problem can be achieved in polynomial time. The multi-view feature selection problem is formalized as the generalization of the above set-up to the case of multi-variable pseudo-boolean functions. The multi-view splitting problem is formalized instead as the problem of maximization of a real function defined over the partition lattice. Also this problem is typically NP-hard. However, candidate solutions can be found by suitably partitioning the top power-index features and keeping in different views the pairs of features that are less interactive or negatively interactive. The sum of the power indices of the participating features can be used to approximate the prediction capability of the view (i.e. they can be used as a proxy for the predicting power). The sum of the feature pair interactivity across views can be used as proxy for the orthogonality of the views. Also the capability of a view to pass information (to teach) to other views, within a co-training procedure can benefit from the use of power indices based on a suitable definition of information transfer (a set of features { a coalition { classifies examples that are subsequently used in the training of a second set of features). As to the feature selection task, not only we demonstrate the use of state of the art power index concepts (e.g. Shapley Value and Banzhaf along the 2lines described above Value), but we define new power indices, within the more general class of probabilistic power indices, that contains the Shapley and the Banzhaf Values as special cases. Since the number of features to select is often a predefined parameter of the problem, we also introduce some novel power indices, namely k-Power Index (and its specializations k-Shapley Value, k-Banzhaf Value): they help selecting the features in a more efficient way. For the feature partitioning, we use the more general class of probabilistic interaction indices that contains the Shapley and Banzhaf Interaction Indices as members. We also address the problem of evaluating the teaching ability of a view, introducing a suitable teaching capability index. The last contribution of the present work consists in comparing the Game Theory approach to the classical Greedy Forward Selection approach for feature selection. In the latter the candidate is obtained by aggregating one feature at time to the current maximal coalition, by choosing always the feature with the maximal marginal contribution. In this case we show that in typical cases the two methods are complementary, and that when used in conjunction they reduce one another error in the estimate of the maximum value. Moreover, the approach based on game theory has two advantages: it samples the space of all possible features\u2019 subsets, while the greedy algorithm scans a selected subspace excluding totally the rest of it, and it is able, for each feature, to assign a score that describes a context-aware measure of importance in the prediction process

    K-Means Clustering in Dual Space for Unsupervised Feature Partitioning in Multi-view Learning

    Get PDF
    In contrast to single-view learning, multi-view learning trains simultaneously distinct algorithms on disjoint subsets of features (the views), and jointly optimizes them, so that they come to a consensus. Multi-view learning is typically used when the data are described by a large number of features. It aims at exploiting the different statistical properties of distinct views. A task to be performed before multi-view learning - in the case where the features have no natural groupings - is multi-view generation (MVG): it consists in partitioning the feature set in subsets (views) characterized by some desired properties. Given a dataset, in the form of a table with a large number of columns, the desired solution of the MVG problem is a partition of the columns that optimizes an objective function, encoding typical requirements. If the class labels are available, one wants to minimize the inter-view redundancy in target prediction and maximize consistency. If the class labels are not available, one wants simply to minimize inter-view redundancy (minimize the information each view has about the others). In this work, we approach the MVG problem in the latter, unsupervised, setting. Our approach is based on the transposition of the data table: the original instance rows are mapped into columns (the 'pseudo-features'), while the original feature columns become rows (the 'pseudo-instances'). The latter can then be partitioned by any suitable standard instance-partitioning algorithm: the resulting groups can be considered as groups of the original features, i.e. views, solution of the MVG problem. We demonstrate the approach using k-means and the standard benchmark MNIST dataset of handwritten digits

    Artificial Intelligence methodologies to early predict student outcome and enrich learning material

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Explainable text-based features in predictive models of crowdfunding campaigns

    Get PDF
    Reward-Based Crowdfunding offers an opportunity for innovative ventures that would not be supported through traditional financing. A key problem for those seeking funding is understanding which features of a crowdfunding campaign will sway the decisions of a sufficient number of funders. Predictive models of fund-raising campaigns used in combination with Explainable AI methods promise to provide such insights. However, previous work on Explainable AI has largely focused on quantitative structured data. In this study, our aim is to construct explainable models of human decisions based on analysis of natural language text, thus contributing to a fast-growing body of research on the use of Explainable AI for text analytics. We propose a novel method to construct predictions based on text via semantic clustering of sentences, which, compared with traditional methods using individual words and phrases, allows complex meaning contained in the text to be operationalised. Using experimental evaluation, we compare our proposed method to keyword extraction and topic modelling, which have traditionally been used in similar applications. Our results demonstrate that the sentence clustering method produces features with significant predictive power, compared to keyword-based methods and topic models, but which are much easier to interpret for human raters. We furthermore conduct a SHAP analysis of the models incorporating sentence clusters, demonstrating concrete insights into the types of natural language content that influence the outcome of crowdfunding campaigns

    Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

    Full text link
    The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Multi-Word Terminology Extraction and Its Role in Document Embedding

    Get PDF
    Automated terminology extraction is a crucial task in natural language processing and ontology construction. Termhood can be inferred using linguistic and statistic techniques. This thesis focuses on the statistic methods. Inspired by feature selection techniques in documents classification, we experiment with a variety of metrics including PMI (point-wise mutual information), MI (mutual information), and Chi-squared. We find that PMI is in favour of identifying top keywords in a domain, but Chi-squared can recognize more keywords overall. Based on this observation, we propose a hybrid approach, called HMI, that combines the best of PMI and Chi-squared. HMI outperforms both PMI and Chi-squared. The result is verified by comparing overlapping between the extracted keywords and the author-identified keywords in arXiv data. When the corpora are computer science and physics papers, the top-100 hit rate can reach 0.96 for HMI. We also demonstrate that terminologies can improve documents embeddings. In this experiment, we treat machine-identified multi-word terminologies with one word. Then we use the transformed text as input for the document embedding. Compared with the representations learnt from unigrams only, we observe a performance improvement over 9.41% for F1 score in arXiv data on document classification tasks

    4th. International Conference on Advanced Research Methods and Analytics (CARMA 2022)

    Full text link
    Research methods in economics and social sciences are evolving with the increasing availability of Internet and Big Data sources of information. As these sources, methods, and applications become more interdisciplinary, the 4th International Conference on Advanced Research Methods and Analytics (CARMA) is a forum for researchers and practitioners to exchange ideas and advances on how emerging research methods and sources are applied to different fields of social sciences as well as to discuss current and future challenges. Due to the covid pandemic, CARMA 2022 is planned as a virtual and face-to-face conference, simultaneouslyDoménech I De Soria, J.; Vicente Cuervo, MR. (2022). 4th. International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. https://doi.org/10.4995/CARMA2022.2022.1595
    corecore