28 research outputs found

    USING A LEAST SQUARES SUPPORT VECTOR MACHINE TO ESTIMATE A LOCAL GEOMETRIC GEOID MODEL

    Get PDF
    In this study, test-region global positioning system (GPS) control points exhibitingknown first-order orthometric heights were employed to obtain the points of planecoordinates and ellipsoidal heights by using the real-time GPS kinematicmeasurement method. Plane-fitting, second-order curve-surface fitting, back-propagation (BP) neural networks, and least-squares support vector machine (LS-SVM) calculation methods were employed. The study includes a discussion on dataintegrity and localization, changing reference-point quantities and distributions toobtain an optimal solution. Furthermore, the LS-SVM was combined with localgeoidal-undulation models that were established by researching and analyzing3kernel functions. The results indicated that the overall precision of the localgeometric geoidal-undulation values calculated using the radial basis function(RBF) and third-order polynomial kernel function was optimal and the root meansquare error (RMSE) was approximately ± 1.5 cm. These findings demonstrated thatthe LS-SVM provides a rapid and practical method for determining orthometricheights and should serve as a valuable academic reference regarding local geoidmodels

    Altimetry data and the elastic stress tensor of subduction zones

    Get PDF
    The maximum shear stress (mss) field due to mass anomalies is estimated in the Apennines, the Kermadec-Tonga Trench, and the Rio Grande Rift areas and the results for each area are compared to observed seismicity. A maximum mss of 420 bar was calculated in the Kermadec-Tonga Trench region at a depth of 28 km. Two additional zones with more than 300 bar mss were also observed in the Kermadec-Tonga Trench study. Comparison of the calculated mss field with the observed seismicity in the Kermadec-Tonga showed two zones of well correlated activity. The Rio Grande Rift results showed a maximum mss of 700 bar occurring east of the rift and at a depth of 6 km. Recorded seismicity in the region was primarily constrained to a depth of approximately 5 km, correlating well to the results of the stress calculations. Two areas of high mss are found in the Apennine region: 120 bar at a depth of 55 km, and 149 bar at the surface. Seismic events observed in the Apennine area compare favorably with the mss field calculated, exhibiting two zones of activity. The case of loading by seamounts and icecaps are also simulated. Results for this study show that the mss reaches a maximum of about 1/3 that of the applied surface stress for both cases, and is located at a depth related to the diameter of the surface mass anomaly

    NASA Geodynamics Program

    Get PDF
    Activities and achievements for the period of May 1983 to May 1984 for the NASA geodynamics program are summarized. Abstracts of papers presented at the Conference are inlcuded. Current publications associated with the NASA Geodynamics Program are listed

    A preliminary determination of a gravimetric geoid in Peninsular Malaysia

    Get PDF
    It is considered that precise gravimetric geoid determination is one of the main geodetic problems in Peninsular Malaysia for the near future, since the Global Positioning System (GPS) defined ellipsoidal coordinates require geoidal heights in practice. Geoidal heights can be determined by either a geopotential model alone, or in combination with local gravity and height data. The reference gravity field contributed by the geopotential model can be improved by a tailoring method. This is the main objective of the study; a tailored model called OSU89B-MM (Malaysian Model) complete to degree and order 360 was developed by fitting the pre-existing geopotential model OSU89B to the updated mean free-air anomalies of half degree blocks in the peninsular region. Numerical analyses indicate that the tailoring technique has improved the reference gravity field by about 50% for point anomalies (from 23 mgals to 11 mgals). Tests on absolute geoid heights in selected areas where GPS and levelling data were available have demonstrated about 10% improvement (1 cm to 2 cm) of the tailored model over OSU89B, whereby the long wavelength errors have been partly diminished. The gravimetric geoid height has been computed in three test areas (which were characterised by different types of topography, gravity density and coverage) by Least Squares Collocation (LSC) and Fast Fourier Transforms (FFT). The local height data were also utilised in a remove-restore procedure in order to study the gravitational influence of the topography, especially in test areas of rough terrain. Results show that the standard deviation of the absolute differences between the control GPS/levelling derived geoid heights and predicted gravimetric geoid heights have improved by 5 cm (from 11 cm to 6 cm) compared to the corresponding differences implied by OSU89B- MM. Work carried out in areas of high topographic relief (for which no GPS data were available) has nevertheless shown the terrain contribution to the geoid height to be as much as 0.5 m to 1.5 m

    Multi-component and multi-source approach to model subsidence in deltas. Application to Po Delta Area

    Get PDF
    This thesis focused on the definition of a study approach able to deal with the complexity of the land subsidence phenomenon in deltas. In the framework of the most up- to-date multi-methodological and multi-disciplinary studies concerning land subsidence and targeting to predict and prevent flooding risk, the thesis introduces a procedure based on two main innovations: the multi-component study and the multi-source analysis. The proposed approach is a “multi-component” procedure as it investigates, in the available geodetic datasets, the permanent component apart from the periodic one, and, at the same time, it is a “multi-source” approach because it attempts to identify the relevant processes causing subsidence (sources) by a modelling based on multi-source data analysis. The latter task is accomplished first through multi-disciplinary and multi-methodological comparative analyses, then through modelling of the selected processes. With respect to past and current approaches for studying subsidence phenomena, the developed procedure allows one to: i. overcome the one-component investigation, improving the accuracy in the geodetic velocity estimate; ii. fix the “analyses to modelling” procedure, enhancing qualitative or semi-quantitative procedures that often characterize the “data to source” and the “residual to source” approaches; iii. quicken the source validation phase, accrediting the relevance of the source on the basis of the analysis results and before the modelling phase, differently from the “peering approach”, which validates the source on the basis of the model findings. The proposed procedure has been tested on the Po Delta (northern Italy), an area historically affected by land subsidence and recently interested by accurate continuous geodetic monitoring through GNSS stations. Daily-CGPS time series (three stations), weekly- CGPS time series (two stations) and seven sites of DInSAR-derived time series spanning over the time interval 2009 – 2017 constituted the used geodetic datasets. Several meteo/hydro parameters collected from fifty-seven stations and wide stratigraphic-geological information formed the base for the performed comparative analyses. From the application of the proposed procedure, it turns out that the periodic annual component highlighted in the continuous GPS stations is explained by two water mass-dependent processes: soil moisture mass change, which seems to control the ground level up-or-down lift in the southern part of the Delta, and the river water mass change, which influences the ground displacement in the central part of the Delta. As it concerns the permanent component, the lower rate found over 2012 - 2016 period in the central part of the Delta with respect to the eastern part is interpreted as due to the sediment compaction process of the Holocene prograding sequences and to the increase of rich-clay deposits

    An improved model of the Earth's gravitational field: GEM-T1

    Get PDF
    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested

    NASA oceanic processes program: Status report, fiscal year 1980

    Get PDF
    Goals, philosophy, and objectives of NASA's Oceanic Processes Program are presented as well as detailed information on flight projects, sensor developments, future prospects, individual investigator tasks, and recent publications. A special feature is a group of brief descriptions prepared by leaders in the oceanographic community of how remote sensing might impact various areas of oceanography during the coming decade

    Mathematical theory of the Goddard trajectory determination system

    Get PDF
    Basic mathematical formulations depict coordinate and time systems, perturbation models, orbital estimation techniques, observation models, and numerical integration methods
    corecore