4,711 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Who wrote this scientific text?

    No full text
    The IEEE bibliographic database contains a number of proven duplications with indication of the original paper(s) copied. This corpus is used to test a method for the detection of hidden intertextuality (commonly named "plagiarism"). The intertextual distance, combined with the sliding window and with various classification techniques, identifies these duplications with a very low risk of error. These experiments also show that several factors blur the identity of the scientific author, including variable group authorship and the high levels of intertextuality accepted, and sometimes desired, in scientific papers on the same topic

    Protocol for a Systematic Literature Review on Security-related Research in Ubiquitous Computing

    Get PDF
    Context: This protocol is as a supplementary document to our review paper that investigates security-related challenges and solutions that have occurred during the past decade (from January 2003 to December 2013). Objectives: The objective of this systematic review is to identify security-related challenges, security goals and defenses in ubiquitous computing by answering to three main research questions. First, demographic data and trends will be given by analyzing where, when and by whom the research has been carried out. Second, we will identify security goals that occur in ubiquitous computing, along with attacks, vulnerabilities and threats that have motivated the research. Finally, we will examine the differences in addressing security in ubiquitous computing with those in traditional distributed systems. Method: In order to provide an overview of security-related challenges, goals and solutions proposed in the literature, we will use a systematic literature review (SLR). This protocol describes the steps which are to be taken in order to identify papers relevant to the objective of our review. The first phase of the method includes planning, in which we define the scope of our review by identifying the main research questions, search procedure, as well as inclusion and exclusion criteria. Data extracted from the relevant papers are to be used in the second phase of the method, data synthesis, to answer our research questions. The review will end by reporting on the results. Results and conclusions: The expected results of the review should provide an overview of attacks, vulnerabilities and threats that occur in ubiquitous computing and that have motivated the research in the last decade. Moreover, the review will indicate which security goals are gaining on their significance in the era of ubiquitous computing and provide a categorization of the security-related countermeasures, mechanisms and techniques found in the literature. (authors' abstract)Series: Working Papers on Information Systems, Information Business and Operation

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios
    • …
    corecore