77 research outputs found

    Partial complete controllability of deterministic semilinear systems

    Get PDF
    In this paper the concept of partial complete controllability for deterministic semilinear control systems in separable Hilbert spaces is investigated. Some important systems can be expressed as a first order differential equation only by enlarging the state space. Therefore, the ordinary controllability concepts for them are too strong. This motivates the partial controllability concepts, which are directed to the original state space. Based on generalized contraction mapping theorem, a sufficient condition for the partial complete controllability of a semilinear deterministic control system is obtained in this paper. The result is demonstrated through appropriate examples.Publisher's Versio

    Stability of fractional order systems

    Get PDF
    The theory and applications of fractional calculus (FC) had a considerable progress during the last years. Dynamical systems and control are one of the most active areas, and several authors focused on the stability of fractional order systems. Nevertheless, due to the multitude of efforts in a short period of time, contributions are scattered along the literature, and it becomes difficult for researchers to have a complete and systematic picture of the present day knowledge. This paper is an attempt to overcome this situation by reviewing the state of the art and putting this topic in a systematic form. While the problem is formulated with rigour, from the mathematical point of view, the exposition intends to be easy to read by the applied researchers. Different types of systems are considered, namely, linear/nonlinear, positive, with delay, distributed, and continuous/discrete. Several possible routes of future progress that emerge are also tackled

    Controllability Problem of Fractional Neutral Systems: A Survey

    Get PDF
    The following article presents recent results of controllability problem of dynamical systems in infinite-dimensional space. Generally speaking, we describe selected controllability problems of fractional order systems, including approximate controllability of fractional impulsive partial neutral integrodifferential inclusions with infinite delay in Hilbert spaces, controllability of nonlinear neutral fractional impulsive differential inclusions in Banach space, controllability for a class of fractional neutral integrodifferential equations with unbounded delay, controllability of neutral fractional functional equations with impulses and infinite delay, and controllability for a class of fractional order neutral evolution control systems

    CONTROLLABILITY AND OBSERVABILITY OF BLOOD GLUCOSE LEVELS AND THE IMPACT OF COVID-19 ON DIABETIC PATIENTS

    Get PDF
    Diabetes is a metabolic disorder that is characterized by high blood glucose concentrations resulting from insulin deficiency in case of type 1 or insulin inefficiency in case of type 2. While no cure for diabetes exists, the artificial pancreas is a possible way to manage diabetes, especially for type 1 diabetics. Where an artificial pancreas is a closed-loop control system with an integrated mathematical model. This control system imitates the function of a healthy pancreas. The first part of this thesis is concerned with the control system of an artificial pancreas that is based on Bergman’s minimal model of glucose-insulin dynamics. The aim of the first part of this thesis is to prove both the controllability and the observability of the minimal model which is a fundamental step in the design of an optimal control system. These proofs are based on several mathematical tools such as the insertion of time delays, and theorems such as the Banach contraction mapping theorem in addition to the results of previous related works. On a different note, COVID-19 is a highly infectious global pandemic that targets the respiratory system. The symptoms of this disease were found to be more severe towards patients with comorbidities including diabetes, and so, the second part of this thesis is concerned with the relation of COVID-19 with comorbidities, where a COVID-19 disease transmission model that focuses on comorbidity populations is presented. This model aims at determining the major factors that contribute to the transmission of this disease. The results of this model can aid in implementing strategies that can help in controlling the spread of this pandemic. Parameter estimations of the model are presented in addition to several related calculations including the basic reproduction number and the sensitivity indices of the model’s parameters

    Results on the controllability of Caputo’s fractional descriptor systems with constant delays

    Get PDF
    The paper investigates the controllability of fractional descriptor linear systems with constant delays in control. The Caputo fractional derivative is considered. Using the Drazin inverse and the Laplace transform, a formula for solving of the matrix state equation is obtained. New criteria of relative controllability for Caputo’s fractional descriptor systems are formulated and proved. Both constrained and unconstrained controls are considered. To emphasize the importance of the theoretical studies, an application to electrical circuits is presented as a practical example

    EQUADIFF 15

    Get PDF
    Equadiff 15 – Conference on Differential Equations and Their Applications – is an international conference in the world famous series Equadiff running since 70 years ago. This booklet contains conference materials related with the 15th Equadiff conference in the Czech and Slovak series, which was held in Brno in July 2022. It includes also a brief history of the East and West branches of Equadiff, abstracts of the plenary and invited talks, a detailed program of the conference, the list of participants, and portraits of four Czech and Slovak outstanding mathematicians

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe

    Models of Delay Differential Equations

    Get PDF
    This book gathers a number of selected contributions aimed at providing a balanced picture of the main research lines in the realm of delay differential equations and their applications to mathematical modelling. The contributions have been carefully selected so that they cover interesting theoretical and practical analysis performed in the deterministic and the stochastic settings. The reader will find a complete overview of recent advances in ordinary and partial delay differential equations with applications in other multidisciplinary areas such as Finance, Epidemiology or Engineerin

    Control Systems in Engineering and Optimization Techniques

    Get PDF
    The portfolio diversification strategy study is useful to help investors to plan for the best investment strategy in maximizing return with the given level of risk or minimizing risk. Further, a new set of generalized sufficient conditions for the existence and uniqueness of the solution and finite-time stability has been achieved by using Generalized Gronwall-Bellman inequality. Moreover, a novel development is proposed to solve classical control theory’s difference diagrams and transfer functions. Advanced TCP strategies and free parametrization for continuous-time LTI systems and quality of operation of control systems are presented
    corecore