793 research outputs found

    Fast Exact Bayesian Inference for Sparse Signals in the Normal Sequence Model

    Full text link
    We consider exact algorithms for Bayesian inference with model selection priors (including spike-and-slab priors) in the sparse normal sequence model. Because the best existing exact algorithm becomes numerically unstable for sample sizes over n=500, there has been much attention for alternative approaches like approximate algorithms (Gibbs sampling, variational Bayes, etc.), shrinkage priors (e.g. the Horseshoe prior and the Spike-and-Slab LASSO) or empirical Bayesian methods. However, by introducing algorithmic ideas from online sequential prediction, we show that exact calculations are feasible for much larger sample sizes: for general model selection priors we reach n=25000, and for certain spike-and-slab priors we can easily reach n=100000. We further prove a de Finetti-like result for finite sample sizes that characterizes exactly which model selection priors can be expressed as spike-and-slab priors. The computational speed and numerical accuracy of the proposed methods are demonstrated in experiments on simulated data, on a differential gene expression data set, and to compare the effect of multiple hyper-parameter settings in the beta-binomial prior. In our experimental evaluation we compute guaranteed bounds on the numerical accuracy of all new algorithms, which shows that the proposed methods are numerically reliable whereas an alternative based on long division is not

    Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions

    Full text link
    We present a new approach to sample from generic binary distributions, based on an exact Hamiltonian Monte Carlo algorithm applied to a piecewise continuous augmentation of the binary distribution of interest. An extension of this idea to distributions over mixtures of binary and possibly-truncated Gaussian or exponential variables allows us to sample from posteriors of linear and probit regression models with spike-and-slab priors and truncated parameters. We illustrate the advantages of these algorithms in several examples in which they outperform the Metropolis or Gibbs samplers.Comment: 11 pages, 4 figures. Proceedings of the 27th Annual Conference Neural Information Processing Systems (NIPS), 201

    Efficient Sparse Bayesian Learning using Spike-and-Slab Priors

    Get PDF
    In the context of statistical machine learning, sparse learning is a procedure that seeks a reconciliation between two competing aspects of a statistical model: good predictive power and interpretability. In a Bayesian setting, sparse learning methods invoke sparsity inducing priors to explicitly encode this tradeoff in a principled manner
    • …
    corecore