13,854 research outputs found

    Evaluating Architectural Safeguards for Uncertain AI Black-Box Components

    Get PDF
    Künstliche Intelligenz (KI) hat in den vergangenen Jahren große Erfolge erzielt und ist immer stärker in den Fokus geraten. Insbesondere Methoden des Deep Learning (ein Teilgebiet der KI), in dem Tiefe Neuronale Netze (TNN) zum Einsatz kommen, haben beeindruckende Ergebnisse erzielt, z.B. im autonomen Fahren oder der Mensch-Roboter-Interaktion. Die immense Datenabhängigkeit und Komplexität von TNN haben jedoch gravierende Schwachstellen offenbart. So reagieren TNN sensitiv auf bestimmte Einflussfaktoren der Umwelt (z.B. Helligkeits- oder Kontraständerungen in Bildern) und führen zu falschen Vorhersagen. Da KI (und insbesondere TNN) in sicherheitskritischen Systemen eingesetzt werden, kann solch ein Verhalten zu lebensbedrohlichen Situationen führen. Folglich haben sich neue Forschungspotenziale entwickelt, die sich explizit der Absicherung von KI-Verfahren widmen. Ein wesentliches Problem bei vielen KI-Verfahren besteht darin, dass ihr Verhalten oder Vorhersagen auf Grund ihrer hohen Komplexität nicht erklärt bzw. nachvollzogen werden können. Solche KI-Modelle werden auch als Black-Box bezeichnet. Bestehende Arbeiten adressieren dieses Problem, in dem zur Laufzeit “bösartige” Eingabedaten identifiziert oder auf Basis von Ein- und Ausgaben potenziell falsche Vorhersagen erkannt werden. Arbeiten in diesem Bereich erlauben es zwar potenziell unsichere Zustände zu erkennen, machen allerdings keine Aussagen, inwiefern mit solchen Situationen umzugehen ist. Somit haben sich eine Reihe von Ansätzen auf Architektur- bzw. Systemebene etabliert, um mit KI-induzierten Unsicherheiten umzugehen (z.B. N-Version-Programming-Muster oder Simplex Architekturen). Darüber hinaus wächst die Anforderung an KI-basierte Systeme sich zur Laufzeit anzupassen, um mit sich verändernden Bedingungen der Umwelt umgehen zu können. Systeme mit solchen Fähigkeiten sind bekannt als Selbst-Adaptive Systeme. Software-Ingenieure stehen nun vor der Herausforderung, aus einer Menge von Architekturellen Sicherheitsmechanismen, den Ansatz zu identifizieren, der die nicht-funktionalen Anforderungen bestmöglich erfüllt. Jeder Ansatz hat jedoch unterschiedliche Auswirkungen auf die Qualitätsattribute des Systems. Architekturelle Entwurfsentscheidungen gilt es so früh wie möglich (d.h. zur Entwurfszeit) aufzulösen, um nach der Implementierung des Systems Änderungen zu vermeiden, die mit hohen Kosten verbunden sind. Darüber hinaus müssen insbesondere sicherheitskritische Systeme den strengen (Qualitäts-) Anforderungen gerecht werden, die bereits auf Architektur-Ebene des Software-Systems adressiert werden müssen. Diese Arbeit befasst sich mit einem modellbasierten Ansatz, der Software-Ingenieure bei der Entwicklung von KI-basierten System unterstützt, um architekturelle Entwurfsentscheidungen (bzw. architekturellen Sicherheitsmechanismen) zum Umgang mit KI-induzierten Unsicherheiten zu bewerten. Insbesondere wird eine Methode zur Zuverlässigkeitsvorhersage von KI-basierten Systemen auf Basis von etablierten modellbasierten Techniken erforscht. In einem weiteren Schritt wird die Erweiterbarkeit/Verallgemeinerbarkeit der Zuverlässigkeitsvorhersage für Selbst-Adaptive Systeme betrachtet. Der Kern beider Ansätze ist ein Umweltmodell zur Modellierung () von KI-spezifischen Unsicherheiten und () der operativen Umwelt des Selbst-Adaptiven Systems. Zuletzt wird eine Klassifikationsstruktur bzw. Taxonomie vorgestellt, welche, auf Basis von verschiedenen Dimensionen, KI-basierte Systeme in unterschiedliche Klassen einteilt. Jede Klasse ist mit einem bestimmten Grad an Verlässlichkeitszusicherungen assoziiert, die für das gegebene System gemacht werden können. Die Dissertation umfasst vier zentrale Beiträge. 1. Domänenunabhängige Modellierung von KI-spezifischen Umwelten: In diesem Beitrag wurde ein Metamodell zur Modellierung von KI-spezifischen Unsicherheiten und ihrer zeitlichen Ausdehnung entwickelt, welche die operative Umgebung eines selbstadaptiven Systems bilden. 2. Zuverlässigkeitsvorhersage von KI-basierten Systemen: Der vorgestellte Ansatz erweitert eine existierende Architekturbeschreibungssprache (genauer: Palladio Component Model) zur Modellierung von Komponenten-basierten Software-Architekturen sowie einem dazugehörigenWerkzeug zur Zuverlässigkeitsvorhersage (für klassische Software-Systeme). Das Problem der Black-Box-Eigenschaft einer KI-Komponente wird durch ein Sensitivitätsmodell adressiert, das, in Abhängigkeit zu verschiedenen Unsicherheitsfaktoren, die Prädektive Unsicherheit einer KI-Komponente modelliert. 3. Evaluation von Selbst-Adaptiven Systemen: Dieser Beitrag befasst sich mit einem Rahmenwerk für die Evaluation von Selbst-Adaptiven Systemen, welche für die Absicherung von KI-Komponenten vorgesehen sind. Die Arbeiten zu diesem Beitrag verallgemeinern/erweitern die Konzepte von Beitrag 2 für Selbst-Adaptive Systeme. 4. Klassen der Verlässlichkeitszusicherungen: Der Beitrag beschreibt eine Klassifikationsstruktur, die den Grad der Zusicherung (in Bezug auf bestimmte Systemeigenschaften) eines KI-basierten Systems bewertet. Der zweite Beitrag wurde im Rahmen einer Fallstudie aus dem Bereich des Autonomen Fahrens validiert. Es wurde geprüft, ob Plausibilitätseigenschaften bei der Zuverlässigkeitsvorhersage erhalten bleiben. Hierbei konnte nicht nur die Plausibilität des Ansatzes nachgewiesen werden, sondern auch die generelle Möglichkeit Entwurfsentscheidungen zur Entwurfszeit zu bewerten. Für die Validierung des dritten Beitrags wurden ebenfalls Plausibilitätseigenschaften geprüft (im Rahmen der eben genannten Fallstudie und einer Fallstudie aus dem Bereich der Mensch-Roboter-Interaktion). Darüber hinaus wurden zwei weitere Community-Fallstudien betrachtet, bei denen (auf Basis von Simulatoren) Selbst-Adaptive Systeme bewertet und mit den Ergebnissen unseres Ansatzes verglichen wurden. In beiden Fällen konnte gezeigt werden, dass zum einen alle Plausibilitätseigenschaft erhalten werden und zum anderen, der Ansatz dieselben Ergebnisse erzeugt, wie die Domänen-spezifischen Simulatoren. Darüber hinaus konnten wir zeigen, dass unser Ansatz Software-Ingenieure bzgl. der Bewertung von Entwurfsentscheidungen, die für die Entwicklung von Selbst-Adaptiven Systemen relevant sind, unterstützt. Der erste Beitrag wurde implizit mit Beitrag 2 und mit 3 validiert. Für den vierten Beitrag wurde die Klassifikationsstruktur auf bekannte und repräsentative KI-Systeme angewandt und diskutiert. Es konnte jedes KI-System in eine der Klassen eingeordnet werden, so dass die generelle Anwendbarkeit der Klassifikationsstruktur gezeigt wurde

    Improving fairness in machine learning systems: What do industry practitioners need?

    Full text link
    The potential for machine learning (ML) systems to amplify social inequities and unfairness is receiving increasing popular and academic attention. A surge of recent work has focused on the development of algorithmic tools to assess and mitigate such unfairness. If these tools are to have a positive impact on industry practice, however, it is crucial that their design be informed by an understanding of real-world needs. Through 35 semi-structured interviews and an anonymous survey of 267 ML practitioners, we conduct the first systematic investigation of commercial product teams' challenges and needs for support in developing fairer ML systems. We identify areas of alignment and disconnect between the challenges faced by industry practitioners and solutions proposed in the fair ML research literature. Based on these findings, we highlight directions for future ML and HCI research that will better address industry practitioners' needs.Comment: To appear in the 2019 ACM CHI Conference on Human Factors in Computing Systems (CHI 2019

    Self-Management – Potentiale, Probleme, Perspektiven

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Gordon Moores Gesetz vom exponentiellen Wachstum der Transistordichte pro Quadrat-Zoll hat seit 1965 die IT-Industrie geprägt. Mit der damit einhergehenden Explosion der Rechnerleistung wurde die Software immer leistungsfähiger, und man ist dazu übergegangen, Rechnersysteme zu vernetzen und Anwendungen zu verteilen. Eine Folge dieser Entwicklungen ist die rapide zunehmende Komplexität der modernen Informationstechnologie. 40 Jahre nach Moores Entdeckung droht eben diese Tatsache, dem bisherigen exponentiellen Wachstum natürliche Grenzen zu setzen. Moderne, vernetzte Rechnersysteme, wie sie in der Industrie weit verbreitet sind, sind schon heute zu komplex als dass sie auf manuellem Wege, d.h., durch menschliche Administratoren, in einem optimalen Betriebszustand gehalten werden können. Die Folgen sind eine unzureichende Ausnutzung vorhandener Ressourcen, wiederkehrende Fehlerzustände und Lücken in der Absicherung gegen mutwillige Angriffe auf die System-Integrität. Dies führt zu erheblichen finanziellen Mehraufwendungen bzw. Verlusten. Ein permanent überfordertes Administrationspersonal, trägt durch eigene Fehler ein Übriges bei.Schenkt man den jüngst aufkeimenden Initiativen von IT-Giganten wie IBM, Microsoft und Sun Glauben, so heißt die Lösung dieser Misere automatisiertes Management. Vernetzte Rechnersysteme sollen sich auf lange Sicht selbst verwalten. Man erhofft sich hiervon ein effektiveres Management und eine Freistellung von Personal, welches sich dann um wichtigere Aufgaben kümmern kann.In diesem Beitrag beleuchten wir den aktuellen Stand und die Perspektiven im Bereich des Self-Managements. Des Weiteren diskutieren wir offene Fragen, welche auf dem Weg zu selbstverwaltenden Systemen zu lösen sind

    Self-adaptive fitness in evolutionary processes

    Get PDF
    Most optimization algorithms or methods in artificial intelligence can be regarded as evolutionary processes. They start from (basically) random guesses and produce increasingly better results with respect to a given target function, which is defined by the process's designer. The value of the achieved results is communicated to the evolutionary process via a fitness function that is usually somewhat correlated with the target function but does not need to be exactly the same. When the values of the fitness function change purely for reasons intrinsic to the evolutionary process, i.e., even though the externally motivated goals (as represented by the target function) remain constant, we call that phenomenon self-adaptive fitness. We trace the phenomenon of self-adaptive fitness back to emergent goals in artificial chemistry systems, for which we develop a new variant based on neural networks. We perform an in-depth analysis of diversity-aware evolutionary algorithms as a prime example of how to effectively integrate self-adaptive fitness into evolutionary processes. We sketch the concept of productive fitness as a new tool to reason about the intrinsic goals of evolution. We introduce the pattern of scenario co-evolution, which we apply to a reinforcement learning agent competing against an evolutionary algorithm to improve performance and generate hard test cases and which we also consider as a more general pattern for software engineering based on a solid formal framework. Multiple connections to related topics in natural computing, quantum computing and artificial intelligence are discovered and may shape future research in the combined fields.Die meisten Optimierungsalgorithmen und die meisten Verfahren in Bereich künstlicher Intelligenz können als evolutionäre Prozesse aufgefasst werden. Diese beginnen mit (prinzipiell) zufällig geratenen Lösungskandidaten und erzeugen dann immer weiter verbesserte Ergebnisse für gegebene Zielfunktion, die der Designer des gesamten Prozesses definiert hat. Der Wert der erreichten Ergebnisse wird dem evolutionären Prozess durch eine Fitnessfunktion mitgeteilt, die normalerweise in gewissem Rahmen mit der Zielfunktion korreliert ist, aber auch nicht notwendigerweise mit dieser identisch sein muss. Wenn die Werte der Fitnessfunktion sich allein aus für den evolutionären Prozess intrinsischen Gründen ändern, d.h. auch dann, wenn die extern motivierten Ziele (repräsentiert durch die Zielfunktion) konstant bleiben, nennen wir dieses Phänomen selbst-adaptive Fitness. Wir verfolgen das Phänomen der selbst-adaptiven Fitness zurück bis zu künstlichen Chemiesystemen (artificial chemistry systems), für die wir eine neue Variante auf Basis neuronaler Netze entwickeln. Wir führen eine tiefgreifende Analyse diversitätsbewusster evolutionärer Algorithmen durch, welche wir als Paradebeispiel für die effektive Integration von selbst-adaptiver Fitness in evolutionäre Prozesse betrachten. Wir skizzieren das Konzept der produktiven Fitness als ein neues Werkzeug zur Untersuchung von intrinsischen Zielen der Evolution. Wir führen das Muster der Szenarien-Ko-Evolution (scenario co-evolution) ein und wenden es auf einen Agenten an, der mittels verstärkendem Lernen (reinforcement learning) mit einem evolutionären Algorithmus darum wetteifert, seine Leistung zu erhöhen bzw. härtere Testszenarien zu finden. Wir erkennen dieses Muster auch in einem generelleren Kontext als formale Methode in der Softwareentwicklung. Wir entdecken mehrere Verbindungen der besprochenen Phänomene zu Forschungsgebieten wie natural computing, quantum computing oder künstlicher Intelligenz, welche die zukünftige Forschung in den kombinierten Forschungsgebieten prägen könnten
    corecore