2,033 research outputs found

    Development of artificial neural network-based object detection algorithms for low-cost hardware devices

    Get PDF
    Finally, the fourth work was published in the “WCCI” conference in 2020 and consisted of an individuals' position estimation algorithm based on a novel neural network model for environments with forbidden regions, named “Forbidden Regions Growing Neural Gas”.The human brain is the most complex, powerful and versatile learning machine ever known. Consequently, many scientists of various disciplines are fascinated by its structures and information processing methods. Due to the quality and quantity of the information extracted from the sense of sight, image is one of the main information channels used by humans. However, the massive amount of video footage generated nowadays makes it difficult to process those data fast enough manually. Thus, computer vision systems represent a fundamental tool in the extraction of information from digital images, as well as a major challenge for scientists and engineers. This thesis' primary objective is automatic foreground object detection and classification through digital image analysis, using artificial neural network-based techniques, specifically designed and optimised to be deployed in low-cost hardware devices. This objective will be complemented by developing individuals' movement estimation methods by using unsupervised learning and artificial neural network-based models. The cited objectives have been addressed through a research work illustrated in four publications supporting this thesis. The first one was published in the “ICAE” journal in 2018 and consists of a neural network-based movement detection system for Pan-Tilt-Zoom (PTZ) cameras deployed in a Raspberry Pi board. The second one was published in the “WCCI” conference in 2018 and consists of a deep learning-based automatic video surveillance system for PTZ cameras deployed in low-cost hardware. The third one was published in the “ICAE” journal in 2020 and consists of an anomalous foreground object detection and classification system for panoramic cameras, based on deep learning and supported by low-cost hardware

    Variable weight neural networks and their applications on material surface and epilepsy seizure phase classifications

    Get PDF
    This paper presents a novel neural network having variable weights, which is able to improve its learning and generalization capabilities, to deal with classification problems. The variable weight neural network (VWNN) allows its weights to be changed in operation according to the characteristic of the network inputs so that it demonstrates the ability to adapt to different characteristics of input data resulting in better performance compared with ordinary neural networks with fixed weights. The effectiveness of the VWNN is tested with the consideration of two real-life applications. The first application is on the classification of materials using the data collected by a robot finger with tactile sensors sliding along the surface of a given material. The second application considers the classification of seizure phases of epilepsy (seizure-free, pre-seizure and seizure phases) using real clinical data. Comparisons are performed with some traditional classification methods including neural network, k-nearest neighbors and naive Bayes classification techniques. It is shown that the VWNN classifier outperforms the traditional methods in terms of classification accuracy and robustness property when input datais contaminated by noise

    Data mining an EEG dataset with an emphasis on dimensionality reduction

    Get PDF
    The human brain is obviously a complex system, and exhibits rich spatiotemporal dynamics. Among the non-invasive techniques for probing human brain dynamics, electroencephalography (EEG) provides a direct measure of cortical activity with millisecond temporal resolution. Early attempts to analyse EEG data relied on visual inspection of EEG records. Since the introduction of EEG recordings, the volume of data generated from a study involving a single patient has increased exponentially. Therefore, automation based on pattern classification techniques have been applied with considerable success. In this study, a multi-step approach for the classification of EEG signal has been adopted. We have analysed sets of EEG time series recording from healthy volunteers with open eyes and intracranial EEG recordings from patients with epilepsy during ictal (seizure) periods. In the present work, we have employed a discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time - that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. Principal components analysis (PCA) and rough sets have been used to reduce the data dimensionality. A multi-classifier scheme consists of LVQ2.1 neural networks have been developed for the classification task. The experimental results validated the proposed methodology

    Whole Brain Network Dynamics of Epileptic Seizures at Single Cell Resolution

    Full text link
    Epileptic seizures are characterised by abnormal brain dynamics at multiple scales, engaging single neurons, neuronal ensembles and coarse brain regions. Key to understanding the cause of such emergent population dynamics, is capturing the collective behaviour of neuronal activity at multiple brain scales. In this thesis I make use of the larval zebrafish to capture single cell neuronal activity across the whole brain during epileptic seizures. Firstly, I make use of statistical physics methods to quantify the collective behaviour of single neuron dynamics during epileptic seizures. Here, I demonstrate a population mechanism through which single neuron dynamics organise into seizures: brain dynamics deviate from a phase transition. Secondly, I make use of single neuron network models to identify the synaptic mechanisms that actually cause this shift to occur. Here, I show that the density of neuronal connections in the network is key for driving generalised seizure dynamics. Interestingly, such changes also disrupt network response properties and flexible dynamics in brain networks, thus linking microscale neuronal changes with emergent brain dysfunction during seizures. Thirdly, I make use of non-linear causal inference methods to study the nature of the underlying neuronal interactions that enable seizures to occur. Here I show that seizures are driven by high synchrony but also by highly non-linear interactions between neurons. Interestingly, these non-linear signatures are filtered out at the macroscale, and therefore may represent a neuronal signature that could be used for microscale interventional strategies. This thesis demonstrates the utility of studying multi-scale dynamics in the larval zebrafish, to link neuronal activity at the microscale with emergent properties during seizures

    Shallow Buried Improvised Explosive Device Detection Via Convolutional Neural Networks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The issue of detecting improvised explosive devices, henceforth IEDs, in rural or built-up urban environments is a persistent and serious concern for governments in the developing world. In many cases, such devices are plastic, or varied metallic objects containing rudimentary explosives, which are not visible to the naked eye and are difficult to detect autonomously. The most effective strategy for detecting land mines also happens to be the most dangerous. This paper intends to leverage the use of a Convolutional Neural Network (CNN) to aid in the discovery of such IEDs. As part of a related project, an autonomous sensor array was used to detect the devices in terrains too hazardous for a human to survey. This paper presents a CNN and its training methodology, suitable to make use of the sensor system. This convolutional neural network can accurately distinguish between a potential IED and surrounding undergrowth and natural features of the environment in real-time. The training methodology enabled the CNN to successfully recognise the IEDs with an accuracy of 98.7%, in well-lit conditions. The results are evaluated against other convolutional neural systems as well as against a deterministic algorithm, showing that the proposed CNN outperforms its competitors including the deterministic method

    An informatics based approach to respiratory healthcare.

    Get PDF
    By 2005 one person in every five UK households suffered with asthma. Research has shown that episodes of poor air quality can have a negative effect on respiratory health and is a growing concern for the asthmatic. To better inform clinical staff and patients to the contribution of poor air quality on patient health, this thesis defines an IT architecture that can be used by systems to identify environmental predictors leading to a decline in respiratory health of an individual patient. Personal environmental predictors of asthma exacerbation are identified by validating the delay between environmental predictors and decline in respiratory health. The concept is demonstrated using prototype software, and indicates that the analytical methods provide a mechanism to produce an early warning of impending asthma exacerbation due to poor air quality. The author has introduced the term enviromedics to describe this new field of research. Pattern recognition techniques are used to analyse patient-specific environments, and extract meaningful health predictors from the large quantities of data involved (often in the region of '/o million data points). This research proposes a suitable architecture that defines processes and techniques that enable the validation of patient-specific environmental predictors of respiratory decline. The design of the architecture was validated by implementing prototype applications that demonstrate, through hospital admissions data and personal lung function monitoring, that air quality can be used as a predictor of patient-specific health. The refined techniques developed during the research (such as Feature Detection Analysis) were also validated by the application prototypes. This thesis makes several contributions to knowledge, including: the process architecture; Feature Detection Analysis (FDA) that automates the detection of trend reversals within time series data; validation of the delay characteristic using a Self-organising Map (SOM) that is used as an unsupervised method of pattern recognition; Frequency, Boundary and Cluster Analysis (FBCA), an additional technique developed by this research to refine the SOM
    • …
    corecore