5,523 research outputs found

    Integrated Analysis and Synthesis of the Dynamic Behaviour of a Carbonate Field

    Get PDF
    Imperial Users onl

    Seismic detection of fault zone hydrocarbon conduit-seal potential using velocity, frequency, and Q analysis: La Concepcion Field, Lake Maracaibo Venezuela example.

    Get PDF
    The 3-D Post-Stack Time Migrated Seismic Data of La Concepcion Field, Maracaibo Basin, Venezuela cover an existing field with known oil and gas pay zones. The thesis problem is how to use this seismic data in an interpretation of leaky faults that occur in the exploration area of interest. A solution to the problem was obtained using an integrated geophysical approach that included published seismic attribute methods (Variance Cube, Geoframe IESX). Specific developments in this thesis to solve the interpretation problem of leaky faults in the region include (1) an image ray perturbation approach for updating the interval velocity in a faulted domain (2) a peak frequency approach to attenuation estimation within intervals and (3) a scaled interpretation of the velocity measurements at sonic, checkshot and surface seismic reflection data. The first development refines the interval velocities within fracture zones. The second development identifies anomalous attenuation most likely due to the presence of gas. The combined effects of low interval velocity and high attenuation are interpreted to be signs of leaking faults

    Exploring the seismic expression of fault zones in 3D seismic volumes

    Get PDF
    Acknowledgments The seismic interpretation and image processing has been run in the SeisLab facilty at the University of Aberdeen (sponsored by BG, BP and Chevron) Seismic imaging analysis was performed in GeoTeric (ffA), and Mathematica (Wolfram research). Interpretation of seismic amplitudes was performed Petrel 2014 (Schlumberger). We thank Gaynor Paton (Geoteric) for in depth discussion on the facies analysis methodology and significant suggestions to improve the current paper. We thank the New Zealand government (Petroleum and Minerals ministry) and CGG for sharing the seismic dataset utilized in this research paper. Seismic images used here are available through the Virtual Seismic Atlas (www.seismicatlas.org). Nestor Cardozo and an anonymous reviewer are thanked for their constructive comments and suggestions that strongly improved the quality and organization of this paper.Peer reviewedPostprin

    Active megadetachment beneath the western United States

    Get PDF
    Geodetic data, interpreted in light of seismic imaging, seismicity, xenolith studies, and the late Quaternary geologic history of the northern Great Basin, suggest that a subcontinental-scale extensional detachment is localized near the Moho. To first order, seismic yielding in the upper crust at any given latitude in this region occurs via an M7 earthquake every 100 years. Here we develop the hypothesis that since 1996, the region has undergone a cycle of strain accumulation and release similar to “slow slip events” observed on subduction megathrusts, but yielding occurred on a subhorizontal surface 5–10 times larger in the slip direction, and at temperatures >800°C. Net slip was variable, ranging from 5 to 10 mm over most of the region. Strain energy with moment magnitude equivalent to an M7 earthquake was released along this “megadetachment,” primarily between 2000.0 and 2005.5. Slip initiated in late 1998 to mid-1999 in northeastern Nevada and is best expressed in late 2003 during a magma injection event at Moho depth beneath the Sierra Nevada, accompanied by more rapid eastward relative displacement across the entire region. The event ended in the east at 2004.0 and in the remainder of the network at about 2005.5. Strain energy thus appears to have been transmitted from the Cordilleran interior toward the plate boundary, from high gravitational potential to low, via yielding on the megadetachment. The size and kinematic function of the proposed structure, in light of various proxies for lithospheric thickness, imply that the subcrustal lithosphere beneath Nevada is a strong, thin plate, even though it resides in a high heat flow tectonic regime. A strong lowermost crust and upper mantle is consistent with patterns of postseismic relaxation in the southern Great Basin, deformation microstructures and low water content in dunite xenoliths in young lavas in central Nevada, and high-temperature microstructures in analog surface exposures of deformed lower crust. Large-scale decoupling between crust and upper mantle is consistent with the broad distribution of strain in the upper crust versus the more localized distribution in the subcrustal lithosphere, as inferred by such proxies as low P wave velocity and mafic magmatism

    Interferometric analysis of an exploration seismic survey in northern Texas

    Get PDF
    M.S.University of Oklahoma, 2015.Includes bibliographical references (leaves 67-72).The extraction of Earth responses from seismic data without an active source has received more attention in the past decade than ever before. This growth in popularity is primarily due to the increased availability of computing capabilities required to process such data. Interferometry is the most common method of processing passive ambient data. Different methods of interferometric computation are compared in this study and a workflow for the interferogram with the most clarity is presented. Methods of normalization include ru1ming absolute mean, sign bit, and an automatic gain control (AGC) based on root mean squared (RMS) average. Interval lengths from I minute to 120 minutes are compared, and the differences between cross-correlation and cross coherence are examined. The final workflow uses running absolute mean normalization , cross-coherence, and a 30 minute interval length. Interferometry often deals with large amounts of data, greater than 17 terabytes in this case. Additionally, Central Processing Units (CPUs) and Graphical Processing Units (GPUs) are both used on each step of the workflow to find the most efficient hardware for each process. I analyzed the time cost associated with steps in interferometric computation and found CPUs operate faster on complicated normalizations and GPUs operate faster on simple normalizations and correlations. The workflow does not change based on these findings

    Seismic velocity structure of seaward-dipping reflectors on the South American continental margin

    Get PDF
    Seaward dipping reflectors (SDRs) are a key feature within the continent to ocean transition zone of volcanic passive margins. Here we conduct an automated pre-stack depth-migration imaging analysis of commercial seismic data from the volcanic margins of South America. The method used an isotropic, ray-based approach of iterative velocity model building based on the travel time inversion of residual pre-stack depth migration move-out. We find two distinct seismic velocity patterns within the SDRs. While both types show a general increase in velocity with depth consistent with expected compaction and alteration/metamorphic trends, those SDRs that lie within faulted half grabens also have high velocity zones at their down-dip ends. The velocity anomalies are generally concordant with the reflectivity and so we attribute them to the presence of dolerite sills that were injected into the lava pile. The sills therefore result from late-stage melt delivery along the large landward-dipping faults that bound them. In contrast the more outboard SDRs show no velocity anomalies, are more uniform spatially and have unfaulted basal contacts. Our observations imply that the SDRs document a major change in rift architecture, with magmatism linked with early extension and faulting of the upper brittle crust transitioning into more organised, dike-fed eruptions similar to seafloor spreading
    corecore