4,020 research outputs found

    Seismic Waveform Inversion Using the Finite-Difference Contrast Source Inversion Method

    Get PDF
    This paper extends the finite-difference contrast source inversion method to reconstruct the mass density for two-dimensional elastic wave inversion in the framework of the full-waveform inversion. The contrast source inversion method is a nonlinear iterative method that alternatively reconstructs contrast sources and contrast function. One of the most outstanding advantages of this inversion method is the highly computational efficiency, since it does not need to simulate a full forward problem for each inversion iteration. Another attractive feature of the inversion method is that it is of strong capability in dealing with nonlinear inverse problems in an inhomogeneous background medium, because a finite-difference operator is used to represent the differential operator governing the two-dimensional elastic wave propagation. Additionally, the techniques of a multiplicative regularization and a sequential multifrequency inversion are employed to enhance the quality of reconstructions for this inversion method. Numerical reconstruction results show that the inversion method has an excellent performance for reconstructing the objects embedded inside a homogeneous or an inhomogeneous background medium

    Adaptive waveform inversion: theory

    Get PDF
    Conventional full-waveform seismic inversion attempts to find a model of the subsurface that is able to predict observed seismic waveforms exactly; it proceeds by minimizing the difference between the observed and predicted data directly, iterating in a series of linearized steps from an assumed starting model. If this starting model is too far removed from the true model, then this approach leads to a spurious model in which the predicted data are cycle skipped with respect to the observed data. Adaptive waveform inversion (AWI) provides a new form of full-waveform inversion (FWI) that appears to be immune to the problems otherwise generated by cycle skipping. In this method, least-squares convolutional filters are designed that transform the predicted data into the observed data. The inversion problem is formulated such that the subsurface model is iteratively updated to force these Wiener filters toward zero-lag delta functions. As that is achieved, the predicted data evolve toward the observed data and the assumed model evolves toward the true model. This new method is able to invert synthetic data successfully, beginning from starting models and under conditions for which conventional FWI fails entirely. AWI has a similar computational cost to conventional FWI per iteration, and it appears to converge at a similar rate. The principal advantages of this new method are that it allows waveform inversion to begin from less-accurate starting models, does not require the presence of low frequencies in the field data, and appears to provide a better balance between the influence of refracted and reflected arrivals upon the final-velocity model. The AWI is also able to invert successfully when the assumed source wavelet is severely in error

    Validating tomographic model with broad-band waveform modelling: an example from the LA RISTRA transect in the southwestern United States

    Get PDF
    Traveltime tomographic models of the LA RISTRA transect produce excellent waveform fits if we amplify the damped images. We observe systematic waveform distortions across the western edge of the Great Plains from South American events, starting about 300 km east of the centre of the Rio Grande Rift. The amplitude decreases by more than 50 per cent within array stations spanning less than 200 km while the pulse width increases by more than a factor of 2. This feature is not observed for the data arriving from the northwest. While the S-wave tomographic image shows a fast slab-like feature dipping to the southeast beneath the western edge of the Great Plains, synthetics generated from this model do not reproduce the waveform characteristics. However, once we modify the tomographic image by amplifying the velocity contrast between the slab and adjoining mantle by a factor of 2–3, the synthetics produce observed amplitude decay and pulse broadening. In addition to the traveltime delay, amplitude variation due to wave phenomena such as slab diffraction, focusing and defocusing provide much tighter constraints on the geometry of the fast anomaly and its amplitude and sharpness as demonstrated by a forward sensitivity test and snapshots of the seismic wavefield. Our preferred model locates the slab 200 km east of the Rio Grande Rift dipping 70°–75° to the southeast, extending to a depth near 600 km with a thickness of 120 km and a velocity of about 4 per cent fast. In short, adding waveform and amplitude components to regional tomographic studies can help validate and establish structural geometry, sharpness and velocity contrast

    Eigenvector Model Descriptors for Solving an Inverse Problem of Helmholtz Equation: Extended Materials

    Full text link
    We study the seismic inverse problem for the recovery of subsurface properties in acoustic media. In order to reduce the ill-posedness of the problem, the heterogeneous wave speed parameter to be recovered is represented using a limited number of coefficients associated with a basis of eigenvectors of a diffusion equation, following the regularization by discretization approach. We compare several choices for the diffusion coefficient in the partial differential equations, which are extracted from the field of image processing. We first investigate their efficiency for image decomposition (accuracy of the representation with respect to the number of variables and denoising). Next, we implement the method in the quantitative reconstruction procedure for seismic imaging, following the Full Waveform Inversion method, where the difficulty resides in that the basis is defined from an initial model where none of the actual structures is known. In particular, we demonstrate that the method is efficient for the challenging reconstruction of media with salt-domes. We employ the method in two and three-dimensional experiments and show that the eigenvector representation compensates for the lack of low frequency information, it eventually serves us to extract guidelines for the implementation of the method.Comment: 45 pages, 37 figure

    Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data

    Get PDF
    The slip history of the 2003 San Simeon earthquake is constrained by combining strong motion and teleseismic data, along with GPS static offsets and 1-Hz GPS observations. Comparisons of a 1-Hz GPS time series and a co-located strong motion data are in very good agreement, demonstrating a new application of GPS. The inversion results for this event indicate that the rupture initiated at a depth of 8.5 km and propagated southeastwards with a speed ~3.0 km/sec, with rake vectors forming a fan structure around the hypocenter. We obtained a peak slip of 2.8 m and total seismic moment of 6.2 × 10^(18) Nm. We interpret the slip distribution as indicating that the hanging wall rotates relative to the footwall around the hypocenter, in a sense that appears consistent with the shape of the mapped fault trace
    corecore