1,905 research outputs found

    A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

    Get PDF
    Unveiling meaningful geophysical information from seismic data requires to deal with both random and structured "noises". As their amplitude may be greater than signals of interest (primaries), additional prior information is especially important in performing efficient signal separation. We address here the problem of multiple reflections, caused by wave-field bouncing between layers. Since only approximate models of these phenomena are available, we propose a flexible framework for time-varying adaptive filtering of seismic signals, using sparse representations, based on inaccurate templates. We recast the joint estimation of adaptive filters and primaries in a new convex variational formulation. This approach allows us to incorporate plausible knowledge about noise statistics, data sparsity and slow filter variation in parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a constrained minimization problem that alleviates standard regularization issues in finding hyperparameters. The approach demonstrates significantly good performance in low signal-to-noise ratio conditions, both for simulated and real field seismic data

    Blind Curvelet based Denoising of Seismic Surveys in Coherent and Incoherent Noise Environments

    Full text link
    The localized nature of curvelet functions, together with their frequency and dip characteristics, makes the curvelet transform an excellent choice for processing seismic data. In this work, a denoising method is proposed based on a combination of the curvelet transform and a whitening filter along with procedure for noise variance estimation. The whitening filter is added to get the best performance of the curvelet transform under coherent and incoherent correlated noise cases, and furthermore, it simplifies the noise estimation method and makes it easy to use the standard threshold methodology without digging into the curvelet domain. The proposed method is tested on pseudo-synthetic data by adding noise to real noise-less data set of the Netherlands offshore F3 block and on the field data set from east Texas, USA, containing ground roll noise. Our experimental results show that the proposed algorithm can achieve the best results under all types of noises (incoherent or uncorrelated or random, and coherent noise)

    Novel Fourier Quadrature Transforms and Analytic Signal Representations for Nonlinear and Non-stationary Time Series Analysis

    Full text link
    The Hilbert transform (HT) and associated Gabor analytic signal (GAS) representation are well-known and widely used mathematical formulations for modeling and analysis of signals in various applications. In this study, like the HT, to obtain quadrature component of a signal, we propose the novel discrete Fourier cosine quadrature transforms (FCQTs) and discrete Fourier sine quadrature transforms (FSQTs), designated as Fourier quadrature transforms (FQTs). Using these FQTs, we propose sixteen Fourier-Singh analytic signal (FSAS) representations with following properties: (1) real part of eight FSAS representations is the original signal and imaginary part is the FCQT of the real part, (2) imaginary part of eight FSAS representations is the original signal and real part is the FSQT of the real part, (3) like the GAS, Fourier spectrum of the all FSAS representations has only positive frequencies, however unlike the GAS, the real and imaginary parts of the proposed FSAS representations are not orthogonal to each other. The Fourier decomposition method (FDM) is an adaptive data analysis approach to decompose a signal into a set of small number of Fourier intrinsic band functions which are AM-FM components. This study also proposes a new formulation of the FDM using the discrete cosine transform (DCT) with the GAS and FSAS representations, and demonstrate its efficacy for improved time-frequency-energy representation and analysis of nonlinear and non-stationary time series.Comment: 22 pages, 13 figure

    Expand Dimensional of Seismic Data and Random Noise Attenuation Using Low-Rank Estimation

    Get PDF
    Random noise attenuation in seismic data requires employing leading-edge methods to attain reliable denoised data. Efficient noise removal, effective signal preservation and recovery, reasonable processing time with a minimum signal distortion and seismic event deterioration are properties of a desired noise suppression algorithm. There are various noise attenuation methods available that more or less have these properties. We aim to obtain more effective denoised seismic data by assuming 3-D seismic data as a tensor in order three and increasing its dimension to 4-D seismic data by employing continuous wavelet transform (CWT). First, we map 3-D block seismic data to smaller blocks to estimate the low-rank component. The CWT of the tensor is calculated along the third dimension to extract the singular values and their related left/right vectors in the wavelet domain. Afterward, the effective low-rank component is extracted using optimized coefficients for each singular value. Thresholding is applied in the wavelet domain along the third dimension to calculate effective coefficients. Two synthetic and field data examples are considered for performance evaluation of the proposed method, and the results were compared with the competitive random noise suppression methods, such as the tensor optimum shrinkage singular value decomposition, the iterative block tensor singular value thresholding, and the block matching 4-D algorithms. Qualitative and quantitative comparison of the proposed method with other methods indicates that the proposed method efficiently eliminates random noise from seismic data

    An ancient extrasolar system with five sub-Earth-size planets

    Get PDF
    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2+/-1.0 Gyr for the host star, indicating that Kepler-444 formed when the Universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the Universe's 13.8-billion-year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.Comment: Accepted for publication in ApJ; 42 pages, 10 figures, 4 table
    • …
    corecore