256 research outputs found

    Seismic Source Quantitative Parameters Retrieval from InSAR Data and Neural Networks

    Get PDF
    The basic idea of this thesis is to exploit the capabilities of neural networks in a very new framework: the quantitative modelling of the seismic source and the interferogram inversion for retrieving its geometric parameters. The problem can be sum up as follows. When a moderateto- strong earthquake occurs we can apply SAR Interferometry (InSAR) technique to compute a differential interferogram. The latter is used to detect and measure the surface displacement field. The earthquake has been generated by an active, seismogenic, fault having its own specific geometry. Therefore each differential interferogram contains the information concerning the geometry of the seismic source the earthquake comes from; its shape and size, the number of fringes, the lobe orientation and number are the main features of the surface effects field. Two problems have been analysed in this work. The first is the identification of the seismic source mechanism. The second is a typical inversion exercise concerning the fault plane parameter. To perform both exercises of the seismic fault a huge number of synthetic interferograms has been computed. Each of them is generated by a different combination of such geometric parameters. As far as the retrieval of the geometric parameters is concerned an artificial neural network has been properly generated and trained to provide an inversion procedure to single out the geometric parameters of the fault. Five among these latter, Length, Width, Dip, Strike, Depth, have been simultaneously inverted. The result is in agreement with those results based on different approaches. Furthermore the method seems very promising and leads to improve the studies concerning the combined use of neural networks and InSAR technique

    USE OF NEURAL NETWORKS AND SAR INTERFEROMETRY FOR THE AUTOMATIC RETRIEVAL OF TECTONIC PARAMETERS

    Get PDF
    ABSTRACT From its first application in 1992 to detect the displacement field originated from the Landers earthquake In the recent years InSAR capabilities, together with classic seismological and geophysical data such as strong motion records and GPS, have also been used by geophysicists for the assessment of normal fault models Neural networks have already been recognized as being a powerful tool for inversion procedure in remote sensing applications In this study we propose an innovative approach for the seismic source classification and the fault parameter quantitative retrieval. The originality of such an approach consists in exploiting at the same time the capabilities of neural networks and of InSAR measurements in the described context. The network is trained by using a data set generated by the RNGCHN software and then tested on real measured data. The input of the net consists of a set of features calculated from the interferometric image while the output vector contains the parameters characterizing the fault. Two problems have been analysed. The first one is the identification of the seismic source mechanism. The second one addresses the fault plane parameters estimation. The paper illustrates such a methodology and its validation on a set of experimental data. The experimental set up was composed by three case studies covering different types of faults: normal, strike slip, reverse

    DInSAR techniques for studying the October 23, 2011, Van earthquake (Turkey), and its relationship with neighboring structures

    Get PDF
    In October 2011 a strong earthquake hit the Van province, Eastern Turkey. Few days later (November 9th) an aftershock occurred few km southward. Finally in November 1976 another mainshock took place north of Van along the Caldiran fault. We have investigated the possible relations between 2011 mainshock and aftershock and the link with the 1976 earthquake. In order to complete the work SAR interferometry has been applied to measure surface displacements, while the fault geometries of the mainshock have been retrieved by a novel Neural Network approach. Moreover the CFF has been calculated to evaluate the role of 1976 earthquake in promoting the 2011 mainshock and, later on, the role of this latter respect to the aftershock in November 9th, 201

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work

    Unsupervised Automatic Detection Of Transient Phenomena In InSAR Time-Series using Machine Learning

    Get PDF
    The detection and measurement of transient episodes of crustal deformation from global InSAR datasets are crucial for a wide range of solid earth and natural hazard applications. But the large volumes of unlabelled data captured by satellites preclude manual systematic analysis, and the small signal-to-noise ratio makes the task difficult. In this thesis, I present a state-of-the-art, unsupervised and event-agnostic deep-learning based approach for the automatic identification of transient deformation events in noisy time-series of unwrapped InSAR images. I adopt an anomaly detection framework that learns the ‘normal’ spatio-temporal pattern of noise in the data, and which therefore identifies any transient deformation phenomena that deviate from this pattern as ‘anomalies’. The deep-learning model is built around a bespoke autoencoder that includes convolutional and LSTM layers, as well as a neural network which acts as a bridge between the encoder and decoder. I train our model on real InSAR data from northern Turkey and find it has an overall accuracy and true positive rate of around 85% when trying to detect synthetic deformation signals of length-scale > 350 m and magnitude > 4 cm. Furthermore, I also show the method can detect (1) a real Mw 5.7 earthquake in InSAR data from an entirely different region- SW Turkey, (2) a volcanic deformation in Domuyo, Argentina, (3) a synthetic slow-slip event and (4) an interseismic deformation around NAF in a descending frame in northern Turkey. Overall I show that my method is suitable for automated analysis of large, global InSAR datasets, and for robust detection and separation of deformation signals from nuisance signals in InSAR data

    Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: The MOUNTS monitoring system

    Get PDF
    Most of the world’s 1500 active volcanoes are not instrumentally monitored, resulting in deadly eruptions which can occur without observation of precursory activity. The new Sentinel missions are now providing freely available imagery with unprecedented spatial and temporal resolutions, with payloads allowing for a comprehensive monitoring of volcanic hazards. We here present the volcano monitoring platform MOUNTS (Monitoring Unrest from Space), which aims for global monitoring, using multisensor satellite-based imagery (Sentinel-1 Synthetic Aperture Radar SAR, Sentinel-2 Short-Wave InfraRed SWIR, Sentinel-5P TROPOMI), ground-based seismic data (GEOFON and USGS global earthquake catalogues), and artificial intelligence (AI) to assist monitoring tasks. It provides near-real-time access to surface deformation, heat anomalies, SO2 gas emissions, and local seismicity at a number of volcanoes around the globe, providing support to both scientific and operational communities for volcanic risk assessment. Results are visualized on an open-access website where both geocoded images and time series of relevant parameters are provided, allowing for a comprehensive understanding of the temporal evolution of volcanic activity and eruptive products. We further demonstrate that AI can play a key role in such monitoring frameworks. Here we design and train a Convolutional Neural Network (CNN) on synthetically generated interferograms, to operationally detect strong deformation (e.g., related to dyke intrusions), in the real interferograms produced by MOUNTS. The utility of this interdisciplinary approach is illustrated through a number of recent eruptions (Erta Ale 2017, Fuego 2018, Kilauea 2018, Anak Krakatau 2018, Ambrym 2018, and Piton de la Fournaise 2018–2019). We show how exploiting multiple sensors allows for assessment of a variety of volcanic processes in various climatic settings, ranging from subsurface magma intrusion, to surface eruptive deposit emplacement, pre/syn-eruptive morphological changes, and gas propagation into the atmosphere. The data processed by MOUNTS is providing insights into eruptive precursors and eruptive dynamics of these volcanoes, and is sharpening our understanding of how the integration of multiparametric datasets can help better monitor volcanic hazards

    Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event?

    Get PDF
    We have investigated the possible cause-and-effect relationship due to stress transfer between two earthquakes that occurred near Christchurch, New Zealand, in September 2010 and in February 2011. The Mw 7.1 Darfield (Canterbury) event took place along a previously unrecognized fault. The Mw 6.3 Christchurch earthquake, generated by a thrust fault, occurred approximately five months later, 6 km south-east of Christchurch's city center. We have first measured the surface displacement field to retrieve the geometries of the two seismic sources and the slip distribution. In order to assess whether the first earthquake increased the likelihood of occurrence of a second earthquake, we compute the Coulomb Failure Function (CFF). We find that the maximum CFF increase over the second fault plane is reached exactly around the hypocenter of the second earthquake. In this respect, we may conclude that the Darfield earthquake contributed to promote the rupture of the Christchurch fault

    Automatic Detection of Volcanic Unrest Using Interferometric Synthetic Aperture Radar

    Get PDF
    A diverse set of hazards are posed by the world's 1500 subaerial volcanoes, yet the majority of them remain unmonitored. Measurements of deformation provide a way to monitor volcanoes, and synthetic aperture RaDAR (SAR) provides a powerful tool to measure deformation at the majority of the world's subaerial volcanoes. This is due to recent changes in how regularly SAR data are acquired, how they are distributed to the scientific community, and how quickly they can be processed to create time series of interferograms. However, for interferometric SAR (InSAR) to be used to monitor the world's volcanoes, an algorithm is required to automatically detect signs of deformation-generating volcanic unrest in a time series of interferograms, as the volume of new interferograms produced each week precludes this task being achieved by human interpreters. In this thesis, I introduce two complementary methods that can be used to detect signs of volcanic unrest. The first method centres on the use of blind signal separation (BSS) methods to isolate signals of geophysical interest from nuisance signals, such as those due to changes in the refractive index of the atmosphere between two SAR acquisitions. This is achieved through first comparing which of non-negative matrix factorisation (NMF), principal component analysis (PCA), and independent component analysis (ICA) are best suited for solving BSS problems involving time series of InSAR data, and how InSAR data should best be arranged for its use with these methods. I find that NMF can be used with InSAR data, providing the time series is formatted in a novel way that reduces the likelihood of any pixels having negative values. However, when NMF, PCA, and ICA are applied to a set of synthetic data, I find that the most accurate recovery of signals of interest is achieved when ICA is set to recover spatially independent sources (termed sICA). I find that the best results are produced by sICA when interferograms are ordered as a simple ``daisy chain'' of short temporal baselines, and when sICA is set to recover around 1-3 more sources than were thought to have contributed to the time series. However, I also show that in cases such as deformation centred under a stratovolcano, the overlapping nature of a topographically correlated atmospheric phase screen (APS) signal and a deformation signal produces a pair of signals that are no longer spatially statistically independent, and so cannot be recovered accurately by sICA. To validate these results, I apply sICA to a time series of Sentinel-1 interferograms that span the 2015 eruption of Wolf volcano (Galapagos archipelago, Ecuador) and automatically isolate three signals of geophysical interest, which I validate by comparing with the results of other studies. I also apply the sICA algorithm to a time series of interferograms that image Mt Etna, and through isolating signals that are likely to be due to instability of the east flank of the volcano, show that the method can be applied to stratovolcanoes to recover useful signals. Utilising the ability of sICA to isolate signals of interest, I introduce a prototype detection algorithm that tracks changes in the behaviour of a subaerial volcano, and show that it could have been used to detect the onset of the 2015 eruption of Wolf. However, for use in an detection algorithm that is to be applied globally, the signals recovered by sICA cannot be manually validated through comparison with other studies. Therefore, I seek to incorporate a module into my detection algorithm that is able to quantify the significance of the sources recovered by sICA. I achieve this through extensively modernising the ICASO algorithm to create a new algorithm, ICASAR, that is optimised for use with InSAR time series. This algorithm allows me to assess the significance of signals recovered by sICA at a given volcano, and to then prioritise the tracking of any changes they exhibit when they are used in my detection algorithm. To further develop the detection algorithm, I create two synthetic time series that characterise the different types of unrest that could occur at a volcanic centre. The first features the introduction of a new signal, and my algorithm is able to detect when this signal enters the time series by tracking how well the baseline sources are able to fit new interferograms. The second features the change in rate of a signal that was present during the baseline stage, and my algorithm is able to detect when this change in rate occurs by tracking how sources recovered from the baseline data are used through time. To further test the algorithm, I extended the Sentinel-1 time series I used to study the 2015 eruption of Wolf to include the 2018 eruption of Sierra Negra, and I find that my algorithm is able to detect the increase in inflation that precedes the eruption, and the eruption itself. I also perform a small study into the pre-eruptive inflation seen at Sierra Negra using the deformation signal and its time history that are outputted by ICASAR. A Bayesian inversion is performed using the GBIS software package, in which the inflation signal is modelled as a horizontal rectangular dislocation with variable opening and uniform overpressure. Coupled with the time history of the inflation signal provided by ICASAR, this allows me to determine the temporal evolution of the pre-eruptive overpressure since the beginning of the Sentinel-1 time series in 2014. To extend this back to the end of the previous eruption in 2005, I use GPS data that spans the entire interruptive period. I find that the total interruptive pressure change is ~13.5 MPa, which is significantly larger than the values required for tensile failure of an elastic medium overlying an inflating body. I conclude that it is likely that one or more processes occurred to reduce the overpressure within the sill, and that the change in rate of inflation prior to the final failure of the sill is unlikely to be coincidental. The second method I develop to detect volcanic deformation in a time series of interferograms uses a convolutional neural network (CNN) to classify and locate deformation signals as each new interferogram is added to the time series. I achieve this through building a model that uses the five convolutional blocks of a previously state-of-the-art classification and localisation model, VGG16, but incorporates a classification output/head, and a localisation output/head. In order to train the model, I perform transfer learning and utilise the weights made freely available for the convolutional blocks of a version of VGG16 that was trained to classify natural images. I then synthesise a set of training data, but find that better performance is achieved on a testing set of Sentinel-1 interferograms when the model is trained with a mixture of both synthetic and real data. I conclude that CNNs can be built that are able to differentiate between different styles of volcanic deformation, and that they can perform localisation by globally reasoning with a 224 x 224 pixel interferogram without the need for a sliding window approach. The results I present in this thesis show that many machine learning methods can be applied to both time series of interferograms, and individual interferograms. sICA provides a powerful tool to separate some geophysical signals from atmospheric ones, and the ICASAR algorithm that I develop allows a user to evaluate the significance of the results provided by sICA. I incorporate these methods into an deformation detection algorithm, and show that this could be used to detect several types of volcanic unrest using data produced by the latest generation of SAR satellites. Additionally, the CNN I develop is able to differentiate between deformation signals in a single interferogram, and provides a complementary way to monitor volcanoes using InSAR

    Volcanic Processes Monitoring and Hazard Assessment Using Integration of Remote Sensing and Ground-Based Techniques

    Get PDF
    The monitoring of active volcanoes is a complex task based on multidisciplinary and integrated analyses that use ground, drones and satellite monitoring devices. Over time, and with the development of new technologies and increasing frequency of acquisition, the use of remote sensing to accomplish this important task has grown enormously. This is especially so with the use of drones and satellites for classifying eruptive events and detecting the opening of new vents, the spreading of lava flows on the surface or ash plumes in the atmosphere, the fallout of tephra on the ground, the intrusion of new magma within the volcano edifice, and the deformation preceding impending eruptions, and many other factors. The main challenge in using remote sensing techniques is to develop automated and reliable systems that may assist the decision maker in volcano monitoring, hazard assessment and risk reduction. The integration with ground-based techniques represents a valuable additional aspect that makes the proposed methods more robust and reinforces the results obtained. This collection of papers is focused on several active volcanoes, such as Stromboli, Etna, and Volcano in Italy; the Long Valley caldera and Kilauea volcano in the USA; and Cotopaxi in Ecuador
    • …
    corecore