11,815 research outputs found

    Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection

    Full text link
    We have developed an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells inspired by a multi-resolution community detection (MCD) based network segmentation method. The image processing problem is framed as identifying segments with respective average FLTs against a background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network composed using image pixels as the nodes and similarity between the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments and high network resolution leads to smaller segments. Further, the mean-square error (MSE) in estimating the FLT segments in a FLIM image using the proposed method was found to be consistently decreasing with increasing resolution of the corresponding network. The proposed MCD method outperformed a popular spectral clustering based method in performing FLIM image segmentation. The spectral segmentation method introduced noisy segments in its output at high resolution. It was unable to offer a consistent decrease in MSE with increasing resolution.Comment: 21 pages, 6 figure

    Better Foreground Segmentation Through Graph Cuts

    Get PDF
    For many tracking and surveillance applications, background subtraction provides an effective means of segmenting objects moving in front of a static background. Researchers have traditionally used combinations of morphological operations to remove the noise inherent in the background-subtracted result. Such techniques can effectively isolate foreground objects, but tend to lose fidelity around the borders of the segmentation, especially for noisy input. This paper explores the use of a minimum graph cut algorithm to segment the foreground, resulting in qualitatively and quantitiatively cleaner segmentations. Experiments on both artificial and real data show that the graph-based method reduces the error around segmented foreground objects. A MATLAB code implementation is available at http://www.cs.smith.edu/~nhowe/research/code/#fgsegComment: 8 pages, 110 figures. Revision: Added web link to downloadable Matlab implementatio
    • …
    corecore