57 research outputs found

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Shape segmentation and retrieval based on the skeleton cut space

    Get PDF
    3D vormverzamelingen groeien snel in veel toepassingsgebieden. Om deze effectief te kunnen gebruiken bij modelleren, simuleren, of 3D contentontwikkeling moet men 3D vormen verwerken. Voorbeelden hiervan zijn het snijden van een vorm in zijn natuurlijke onderdelen (ook bekend als segmentatie), en het vinden van vormen die lijken op een gegeven model in een grote vormverzameling (ook bekend als opvraging). Dit proefschrift presenteert nieuwe methodes voor 3D vormsegmentatie en vormopvraging die gebaseerd zijn op het zogenaamde oppervlakskelet van een 3D vorm. Hoewel allang bekend, dergelijke skeletten kunnen alleen sinds kort snel, robuust, en bijna automatisch berekend worden. Deze ontwikkelingen stellen ons in staat om oppervlakskeletten te gebruiken om vormen te karakteriseren en analyseren zodat operaties zoals segmentatie en opvraging snel en automatisch gedaan kunnen worden. We vergelijken onze nieuwe methodes met moderne methodes voor dezelfde doeleinden en laten zien dat ons aanpak kwalitatief betere resultaten kan produceren. Ten slotte presenteren wij een nieuwe methode om oppervlakskeletten te extraheren die is veel simpeler dan, en heeft vergelijkbare snelheid met, de beste technieken in zijn klasse. Samenvattend, dit proefschrift laat zien hoe men een complete workflow kan implementeren voor het segmenteren en opvragen van 3D vormen gebruik makend van oppervlakskeletten alleen

    Skeletonization methods for image and volume inpainting

    Get PDF

    separation and segmentation of the hepatic vasculature in CT images

    Get PDF

    Skeletonization methods for image and volume inpainting

    Get PDF

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Anatomical Modeling of Cerebral Microvascular Structures: Application to Identify Biomarkers of Microstrokes

    Get PDF
    Les réseaux microvasculaires corticaux sont responsables du transport de l’oxygène et des substrats énergétiques vers les neurones. Ces réseaux réagissent dynamiquement aux demandes énergétiques lors d’une activation neuronale par le biais du couplage neurovasculaire. Afin d’élucider le rôle de la composante microvasculaire dans ce processus de couplage, l’utilisation de la modélisation in-formatique pourrait se révéler un élément clé. Cependant, la manque de méthodologies de calcul appropriées et entièrement automatisées pour modéliser et caractériser les réseaux microvasculaires reste l’un des principaux obstacles. Le développement d’une solution entièrement automatisée est donc important pour des explorations plus avancées, notamment pour quantifier l’impact des mal-formations vasculaires associées à de nombreuses maladies cérébrovasculaires. Une observation courante dans l’ensemble des troubles neurovasculaires est la formation de micro-blocages vascu-laires cérébraux (mAVC) dans les artérioles pénétrantes de la surface piale. De récents travaux ont démontré l’impact de ces événements microscopiques sur la fonction cérébrale. Par conséquent, il est d’une importance vitale de développer une approche non invasive et comparative pour identifier leur présence dans un cadre clinique. Dans cette thèse,un pipeline de traitement entièrement automatisé est proposé pour aborder le prob-lème de la modélisation anatomique microvasculaire. La méthode de modélisation consiste en un réseau de neurones entièrement convolutif pour segmenter les capillaires sanguins, un générateur de modèle de surface 3D et un algorithme de contraction de la géométrie pour produire des mod-èles graphiques vasculaires ne comportant pas de connections multiples. Une amélioration de ce pipeline est développée plus tard pour alléger l’exigence de maillage lors de la phase de représen-tation graphique. Un nouveau schéma permettant de générer un modèle de graphe est développé avec des exigences d’entrée assouplies et permettant de retenir les informations sur les rayons des vaisseaux. Il est inspiré de graphes géométriques déformants construits en respectant les morpholo-gies vasculaires au lieu de maillages de surface. Un mécanisme pour supprimer la structure initiale du graphe à chaque exécution est implémenté avec un critère de convergence pour arrêter le pro-cessus. Une phase de raffinement est introduite pour obtenir des modèles vasculaires finaux. La modélisation informatique développée est ensuite appliquée pour simuler les signatures IRM po-tentielles de mAVC, combinant le marquage de spin artériel (ASL) et l’imagerie multidirectionnelle pondérée en diffusion (DWI). L’hypothèse est basée sur des observations récentes démontrant une réorientation radiale de la microvascularisation dans la périphérie du mAVC lors de la récupéra-tion chez la souris. Des lits capillaires synthétiques, orientés aléatoirement et radialement, et des angiogrammes de tomographie par cohérence optique (OCT), acquis dans le cortex de souris (n = 5) avant et après l’induction d’une photothrombose ciblée, sont analysés. Les graphes vasculaires informatiques sont exploités dans un simulateur 3D Monte-Carlo pour caractériser la réponse par résonance magnétique (MR), tout en considérant les effets des perturbations du champ magnétique causées par la désoxyhémoglobine, et l’advection et la diffusion des spins nucléaires. Le pipeline graphique proposé est validé sur des angiographies synthétiques et réelles acquises avec différentes modalités d’imagerie. Comparé à d’autres méthodes effectuées dans le milieu de la recherche, les expériences indiquent que le schéma proposé produit des taux d’erreur géométriques et topologiques amoindris sur divers angiogrammes. L’évaluation confirme également l’efficacité de la méthode proposée en fournissant des modèles représentatifs qui capturent tous les aspects anatomiques des structures vasculaires. Ensuite, afin de trouver des signatures de mAVC basées sur le signal IRM, la modélisation vasculaire proposée est exploitée pour quantifier le rapport de perte de signal intravoxel minimal lors de l’application de plusieurs directions de gradient, à des paramètres de séquence variables avec et sans ASL. Avec l’ASL, les résultats démontrent une dif-férence significative (p <0,05) entre le signal calculé avant et 3 semaines après la photothrombose. La puissance statistique a encore augmenté (p <0,005) en utilisant des angiogrammes capturés à la semaine suivante. Sans ASL, aucun changement de signal significatif n’est trouvé. Des rapports plus élevés sont obtenus à des intensités de champ magnétique plus faibles (par exemple, B0 = 3) et une lecture TE plus courte (<16 ms). Cette étude suggère que les mAVC pourraient être carac-térisés par des séquences ASL-DWI, et fournirait les informations nécessaires pour les validations expérimentales postérieures et les futurs essais comparatifs.----------ABSTRACT Cortical microvascular networks are responsible for carrying the necessary oxygen and energy substrates to our neurons. These networks react to the dynamic energy demands during neuronal activation through the process of neurovascular coupling. A key element in elucidating the role of the microvascular component in the brain is through computational modeling. However, the lack of fully-automated computational frameworks to model and characterize these microvascular net-works remains one of the main obstacles. Developing a fully-automated solution is thus substantial for further explorations, especially to quantify the impact of cerebrovascular malformations associ-ated with many cerebrovascular diseases. A common pathogenic outcome in a set of neurovascular disorders is the formation of microstrokes, i.e., micro occlusions in penetrating arterioles descend-ing from the pial surface. Recent experiments have demonstrated the impact of these microscopic events on brain function. Hence, it is of vital importance to develop a non-invasive and translatable approach to identify their presence in a clinical setting. In this thesis, a fully automatic processing pipeline to address the problem of microvascular anatom-ical modeling is proposed. The modeling scheme consists of a fully-convolutional neural network to segment microvessels, a 3D surface model generator and a geometry contraction algorithm to produce vascular graphical models with a single connected component. An improvement on this pipeline is developed later to alleviate the requirement of water-tight surface meshes as inputs to the graphing phase. The novel graphing scheme works with relaxed input requirements and intrin-sically captures vessel radii information, based on deforming geometric graphs constructed within vascular boundaries instead of surface meshes. A mechanism to decimate the initial graph struc-ture at each run is formulated with a convergence criterion to stop the process. A refinement phase is introduced to obtain final vascular models. The developed computational modeling is then ap-plied to simulate potential MRI signatures of microstrokes, combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). The hypothesis is driven based on recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially oriented, and op-tical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n=5) before and after inducing targeted photothrombosis, are analyzed. The computational vascular graphs are exploited within a 3D Monte-Carlo simulator to characterize the magnetic resonance (MR) re-sponse, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. The proposed graphing pipeline is validated on both synthetic and real angiograms acquired with different imaging modalities. Compared to other efficient and state-of-the-art graphing schemes, the experiments indicate that the proposed scheme produces the lowest geometric and topological error rates on various angiograms. The evaluation also confirms the efficiency of the proposed scheme in providing representative models that capture all anatomical aspects of vascular struc-tures. Next, searching for MRI-based signatures of microstokes, the proposed vascular modeling is exploited to quantify the minimal intravoxel signal loss ratio when applying multiple gradient di-rections, at varying sequence parameters with and without ASL. With ASL, the results demonstrate a significant difference (p<0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p<0.005) using angiograms captured at week 4. Without ASL, no reliable signal change is found. Higher ratios with improved significance are achieved at low magnetic field strengths (e.g., at 3 Tesla) and shorter readout TE (<16 ms). This study suggests that microstrokes might be characterized through ASL-DWI sequences, and provides necessary insights for posterior experimental validations, and ultimately, future transla-tional trials

    Skeletonization methods for image and volume inpainting

    Get PDF
    Image and shape restoration techniques are increasingly important in computer graphics. Many types of restoration techniques have been proposed in the 2D image-processing and according to our knowledge only one to volumetric data. Well-known examples of such techniques include digital inpainting, denoising, and morphological gap filling. However efficient and effective, such methods have several limitations with respect to the shape, size, distribution, and nature of the defects they can find and eliminate. We start by studying the use of 2D skeletons for the restoration of two-dimensional images. To this end, we show that skeletons are useful and efficient for volumetric data reconstruction. To explore our hypothesis in the 3D case, we first overview the existing state-of-the-art in 3D skeletonization methods, and conclude that no such method provides us with the features required by efficient and effective practical usage. We next propose a novel method for 3D skeletonization, and show how it complies with our desired quality requirements, which makes it thereby suitable for volumetric data reconstruction context. The joint results of our study show that skeletons are indeed effective tools to design a variety of shape restoration methods. Separately, our results show that suitable algorithms and implementations can be conceived to yield high end-to-end performance and quality of skeleton-based restoration methods. Finally, our practical applications can generate competitive results when compared to application areas such as digital hair removal and wire artifact removal

    Understanding the Structure of 3D Shapes

    Get PDF
    Compact representations of three dimensional objects are very often used in computer graphics to create effective ways to analyse, manipulate and transmit 3D models. Their ability to abstract from the concrete shapes and expose their structure is important in a number of applications, spanning from computer animation, to medicine, to physical simulations. This thesis will investigate new methods for the generation of compact shape representations. In the first part, the problem of computing optimal PolyCube base complexes will be considered. PolyCubes are orthogonal polyhedra used in computer graphics to map both surfaces and volumes. Their ability to resemble the original models and at the same time expose a very simple and regular structure is important in a number of applications, such as texture mapping, spline fitting and hex-meshing. The second part will focus on medial descriptors. In particular, two new algorithms for the generation of curve-skeletons will be presented. These methods are completely based on the visual appearance of the input, therefore they are independent from the type, number and quality of the primitives used to describe a shape, determining, thus, an advancement to the state of the art in the field

    Understanding the Structure of 3D Shapes

    Get PDF
    Compact representations of three dimensional objects are very often used in computer graphics to create effective ways to analyse, manipulate and transmit 3D models. Their ability to abstract from the concrete shapes and expose their structure is important in a number of applications, spanning from computer animation, to medicine, to physical simulations. This thesis will investigate new methods for the generation of compact shape representations. In the first part, the problem of computing optimal PolyCube base complexes will be considered. PolyCubes are orthogonal polyhedra used in computer graphics to map both surfaces and volumes. Their ability to resemble the original models and at the same time expose a very simple and regular structure is important in a number of applications, such as texture mapping, spline fitting and hex-meshing. The second part will focus on medial descriptors. In particular, two new algorithms for the generation of curve-skeletons will be presented. These methods are completely based on the visual appearance of the input, therefore they are independent from the type, number and quality of the primitives used to describe a shape, determining, thus, an advancement to the state of the art in the field
    • …
    corecore