637 research outputs found

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    The Probabilistic Active Shape Model: From Model Construction to Flexible Medical Image Segmentation

    Get PDF
    Automatic processing of three-dimensional image data acquired with computed tomography or magnetic resonance imaging plays an increasingly important role in medicine. For example, the automatic segmentation of anatomical structures in tomographic images allows to generate three-dimensional visualizations of a patient’s anatomy and thereby supports surgeons during planning of various kinds of surgeries. Because organs in medical images often exhibit a low contrast to adjacent structures, and because the image quality may be hampered by noise or other image acquisition artifacts, the development of segmentation algorithms that are both robust and accurate is very challenging. In order to increase the robustness, the use of model-based algorithms is mandatory, as for example algorithms that incorporate prior knowledge about an organ’s shape into the segmentation process. Recent research has proven that Statistical Shape Models are especially appropriate for robust medical image segmentation. In these models, the typical shape of an organ is learned from a set of training examples. However, Statistical Shape Models have two major disadvantages: The construction of the models is relatively difficult, and the models are often used too restrictively, such that the resulting segmentation does not delineate the organ exactly. This thesis addresses both problems: The first part of the thesis introduces new methods for establishing correspondence between training shapes, which is a necessary prerequisite for shape model learning. The developed methods include consistent parameterization algorithms for organs with spherical and genus 1 topology, as well as a nonrigid mesh registration algorithm for shapes with arbitrary topology. The second part of the thesis presents a new shape model-based segmentation algorithm that allows for an accurate delineation of organs. In contrast to existing approaches, it is possible to integrate not only linear shape models into the algorithm, but also nonlinear shape models, which allow for a more specific description of an organ’s shape variation. The proposed segmentation algorithm is evaluated in three applications to medical image data: Liver and vertebra segmentation in contrast-enhanced computed tomography scans, and prostate segmentation in magnetic resonance images

    Deformable meshes for shape recovery: models and applications

    Get PDF
    With the advance of scanning and imaging technology, more and more 3D objects become available. Among them, deformable objects have gained increasing interests. They include medical instances such as organs, a sequence of objects in motion, and objects of similar shapes where a meaningful correspondence can be established between each other. Thus, it requires tools to store, compare, and retrieve them. Many of these operations depend on successful shape recovery. Shape recovery is the task to retrieve an object from the environment where its geometry is hidden or implicitly known. As a simple and versatile tool, mesh is widely used in computer graphics for modelling and visualization. In particular, deformable meshes are meshes which can take the deformation of deformable objects. They extend the modelling ability of meshes. This dissertation focuses on using deformable meshes to approach the 3D shape recovery problem. Several models are presented to solve the challenges for shape recovery under different circumstances. When the object is hidden in an image, a PDE deformable model is designed to extract its surface shape. The algorithm uses a mesh representation so that it can model any non-smooth surface with an arbitrary precision compared to a parametric model. It is more computational efficient than a level-set approach. When the explicit geometry of the object is known but is hidden in a bank of shapes, we simplify the deformation of the model to a graph matching procedure through a hierarchical surface abstraction approach. The framework is used for shape matching and retrieval. This idea is further extended to retain the explicit geometry during the abstraction. A novel motion abstraction framework for deformable meshes is devised based on clustering of local transformations and is successfully applied to 3D motion compression

    Multigranularity Representations for Human Inter-Actions: Pose, Motion and Intention

    Get PDF
    Tracking people and their body pose in videos is a central problem in computer vision. Standard tracking representations reason about temporal coherence of detected people and body parts. They have difficulty tracking targets under partial occlusions or rare body poses, where detectors often fail, since the number of training examples is often too small to deal with the exponential variability of such configurations. We propose tracking representations that track and segment people and their body pose in videos by exploiting information at multiple detection and segmentation granularities when available, whole body, parts or point trajectories. Detections and motion estimates provide contradictory information in case of false alarm detections or leaking motion affinities. We consolidate contradictory information via graph steering, an algorithm for simultaneous detection and co-clustering in a two-granularity graph of motion trajectories and detections, that corrects motion leakage between correctly detected objects, while being robust to false alarms or spatially inaccurate detections. We first present a motion segmentation framework that exploits long range motion of point trajectories and large spatial support of image regions. We show resulting video segments adapt to targets under partial occlusions and deformations. Second, we augment motion-based representations with object detection for dealing with motion leakage. We demonstrate how to combine dense optical flow trajectory affinities with repulsions from confident detections to reach a global consensus of detection and tracking in crowded scenes. Third, we study human motion and pose estimation. We segment hard to detect, fast moving body limbs from their surrounding clutter and match them against pose exemplars to detect body pose under fast motion. We employ on-the-fly human body kinematics to improve tracking of body joints under wide deformations. We use motion segmentability of body parts for re-ranking a set of body joint candidate trajectories and jointly infer multi-frame body pose and video segmentation. We show empirically that such multi-granularity tracking representation is worthwhile, obtaining significantly more accurate multi-object tracking and detailed body pose estimation in popular datasets

    SEGMENTATION, RECOGNITION, AND ALIGNMENT OF COLLABORATIVE GROUP MOTION

    Get PDF
    Modeling and recognition of human motion in videos has broad applications in behavioral biometrics, content-based visual data analysis, security and surveillance, as well as designing interactive environments. Significant progress has been made in the past two decades by way of new models, methods, and implementations. In this dissertation, we focus our attention on a relatively less investigated sub-area called collaborative group motion analysis. Collaborative group motions are those that typically involve multiple objects, wherein the motion patterns of individual objects may vary significantly in both space and time, but the collective motion pattern of the ensemble allows characterization in terms of geometry and statistics. Therefore, the motions or activities of an individual object constitute local information. A framework to synthesize all local information into a holistic view, and to explicitly characterize interactions among objects, involves large scale global reasoning, and is of significant complexity. In this dissertation, we first review relevant previous contributions on human motion/activity modeling and recognition, and then propose several approaches to answer a sequence of traditional vision questions including 1) which of the motion elements among all are the ones relevant to a group motion pattern of interest (Segmentation); 2) what is the underlying motion pattern (Recognition); and 3) how two motion ensembles are similar and how we can 'optimally' transform one to match the other (Alignment). Our primary practical scenario is American football play, where the corresponding problems are 1) who are offensive players; 2) what are the offensive strategy they are using; and 3) whether two plays are using the same strategy and how we can remove the spatio-temporal misalignment between them due to internal or external factors. The proposed approaches discard traditional modeling paradigm but explore either concise descriptors, hierarchies, stochastic mechanism, or compact generative model to achieve both effectiveness and efficiency. In particular, the intrinsic geometry of the spaces of the involved features/descriptors/quantities is exploited and statistical tools are established on these nonlinear manifolds. These initial attempts have identified new challenging problems in complex motion analysis, as well as in more general tasks in video dynamics. The insights gained from nonlinear geometric modeling and analysis in this dissertation may hopefully be useful toward a broader class of computer vision applications

    Deformable Multisurface Segmentation of the Spine for Orthopedic Surgery Planning and Simulation

    Get PDF
    Purpose: We describe a shape-aware multisurface simplex deformable model for the segmentation of healthy as well as pathological lumbar spine in medical image data. Approach: This model provides an accurate and robust segmentation scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a manner that combines multisurface and shape statistics-based variants of the deformable simplex model. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence during deformation. Results: Results demonstrate validation against user-assisted expert segmentation, showing excellent boundary agreement and prevention of spatial overlap between neighboring surfaces. This section also plots the characteristics of the statistical shape model, such as compactness, generalizability and specificity, as a function of the number of modes used to represent the family of shapes. Final results demonstrate a proof-of-concept deformation application based on the open-source surgery simulation Simulation Open Framework Architecture toolkit. Conclusions: To summarize, we present a deformable multisurface model that embeds a shape statistics force, with applications to surgery planning and simulation
    • …
    corecore