2 research outputs found

    Performance evaluation of framed slotted ALOHA with reservation packets and succesive interference cancelation for M2M networks

    Full text link
    [EN] Random access protocols like ALOHA have been considered for machine-to-machine (M2M) communication in future networks for their simplicity of operation. This paper evaluates the performance of a Frame Slotted-ALOHA protocol that uses reservation and data packets (FSA-RDP), in a scenario where a controller collects data packets transmitted by a finite number of M2M devices. In FSA-RDP, frames of variable duration are divided in two parts, the reservation and data subframes. During the reservation subframe, active devices send short reservation packets to the controller. The controller assigns reserved slots in the data subframe to those devices that succeeded with the reservation. At devices, the FIFO service discipline and two queue management schemes, tail drop and push-out, have been considered. When the queue size is of one packet, we develop a discrete-time Markov chain to evaluate the protocol performance, including the cumulative distribution function of the delay of data packets that are successfully transmitted. Analytical results are validated by extensive simulations. The simulation model is also used to evaluate the system performance when larger queues are used. In addition, we study the impact that implementing Successive Interference Cancellation (SIC) at the controller has on the system performance. We also evaluate the performance of implementing SIC at the controller together with Irregular Repetition Slotted ALOHA (IRSA) to send the reservation packets. Numerical results show that the protocol efficiency of FSA-RDP is between one and two orders of magnitude larger than the efficiency of conventional Frame Slotted ALOHA, when a perfect channel is assumed. In more realistic channel environments, the use of SIC brings an important performance boost.This work has been supported by the Ministry of Economy and Competitiveness of Spain through projects TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The authors would like to thank the support received from the Institute ITACA (Instituto Universitario de Tecnologias de la Informacion y Comunicaciones) at the Universitat Politecnica de Valencia, Spain. C. Portillo acknowledges the funding received from the European Union under the program Erasmus Mundus Partnerships, project EuroinkaNet, GRANT AGREEMENT NUMBER -2014 -0870/001/001, and the support received from SEP-SES (DSA/103.5/15/6629).Casares-Giner, V.; Martínez Bauset, J.; Portillo, C. (2019). Performance evaluation of framed slotted ALOHA with reservation packets and succesive interference cancelation for M2M networks. Computer Networks. 155:15-30. https://doi.org/10.1016/j.comnet.2019.02.021S153015

    Segmented Framed Slotted Aloha (SFSA) with Capture and Interference Cancellation

    No full text
    This paper investigates the throughput of a Framed Slotted Aloha (FSA) random access scheme, called Segmented FSA (SFSA), in which each packet is encoded and subdivided into segments before the transmission, and where Interference Cancellation (IC) is adopted to improve the success probability in case of collision between segments. The overall system performance is estimated by considering a decoding criterion based on the average information rate that is experienced during each communication. This criterion, which enables to properly consider the capture effect in the presence of interference, noise, and fading, is compared to the classic packet erasure channel model, with the aim of identifying the reliability of the two decoding approaches in different network scenarios. The final purpose of the presented study is to discuss the benefits of the interference diversity mechanism that is triggered by the combination of segmentation and IC in a capture channel
    corecore