1,120 research outputs found

    Segmentation-driven image fusion based on alpha-stable modeling of wavelet coefficients

    Get PDF

    Coercive Region-level Registration for Multi-modal Images

    Full text link
    We propose a coercive approach to simultaneously register and segment multi-modal images which share similar spatial structure. Registration is done at the region level to facilitate data fusion while avoiding the need for interpolation. The algorithm performs alternating minimization of an objective function informed by statistical models for pixel values in different modalities. Hypothesis tests are developed to determine whether to refine segmentations by splitting regions. We demonstrate that our approach has significantly better performance than the state-of-the-art registration and segmentation methods on microscopy images.Comment: This work has been accepted to International Conference on Image Processing (ICIP) 201

    Image Fusion with Contrast Improving and Feature Preserving

    Get PDF
    The goal of image fusion is to obtain a fused image that contains most significant information in all input images which were captured by different sensors from the same scene. In particular, the fusion process should improve the contrast and keep the integrity of significant features from input images. In this paper, we propose a region-based image fusion method to fuse spatially registered visible and infrared images while improving the contrast and preserving the significant features of input images. At first, the proposed method decomposes input images into base layers and detail layers using a bilateral filter. Then the base layers of the input images are segmented into regions. Third, a region-based decision map is proposed to represent the importance of every region. The decision map is obtained by calculating the weights of regions according to the gray-level difference between each region and its neighboring regions in the base layers. At last, the detail layers and the base layers are separately fused by different fusion rules based on the same decision map to generate a final fused image. Experimental results qualitatively and quantitatively demonstrate that the proposed method can improve the contrast of fused images and preserve more features of input images than several previous image fusion methods

    Pixel-level Image Fusion Algorithms for Multi-camera Imaging System

    Get PDF
    This thesis work is motivated by the potential and promise of image fusion technologies in the multi sensor image fusion system and applications. With specific focus on pixel level image fusion, the process after the image registration is processed, we develop graphic user interface for multi-sensor image fusion software using Microsoft visual studio and Microsoft Foundation Class library. In this thesis, we proposed and presented some image fusion algorithms with low computational cost, based upon spatial mixture analysis. The segment weighted average image fusion combines several low spatial resolution data source from different sensors to create high resolution and large size of fused image. This research includes developing a segment-based step, based upon stepwise divide and combine process. In the second stage of the process, the linear interpolation optimization is used to sharpen the image resolution. Implementation of these image fusion algorithms are completed based on the graphic user interface we developed. Multiple sensor image fusion is easily accommodated by the algorithm, and the results are demonstrated at multiple scales. By using quantitative estimation such as mutual information, we obtain the experiment quantifiable results. We also use the image morphing technique to generate fused image sequence, to simulate the results of image fusion. While deploying our pixel level image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also makes it hard to become deployed in system and applications that require real-time feedback, high flexibility and low computation abilit

    A Novel Synergistic Model Fusing Electroencephalography and Functional Magnetic Resonance Imaging for Modeling Brain Activities

    Get PDF
    Study of the human brain is an important and very active area of research. Unraveling the way the human brain works would allow us to better understand, predict and prevent brain related diseases that affect a significant part of the population. Studying the brain response to certain input stimuli can help us determine the involved brain areas and understand the mechanisms that characterize behavioral and psychological traits. In this research work two methods used for the monitoring of brain activities, Electroencephalography (EEG) and functional Magnetic Resonance (fMRI) have been studied for their fusion, in an attempt to bridge together the advantages of each one. In particular, this work has focused in the analysis of a specific type of EEG and fMRI recordings that are related to certain events and capture the brain response under specific experimental conditions. Using spatial features of the EEG we can describe the temporal evolution of the electrical field recorded in the scalp of the head. This work introduces the use of Hidden Markov Models (HMM) for modeling the EEG dynamics. This novel approach is applied for the discrimination of normal and progressive Mild Cognitive Impairment patients with significant results. EEG alone is not able to provide the spatial localization needed to uncover and understand the neural mechanisms and processes of the human brain. Functional Magnetic Resonance imaging (fMRI) provides the means of localizing functional activity, without though, providing the timing details of these activations. Although, at first glance it is apparent that the strengths of these two modalities, EEG and fMRI, complement each other, the fusion of information provided from each one is a challenging task. A novel methodology for fusing EEG spatiotemporal features and fMRI features, based on Canonical Partial Least Squares (CPLS) is presented in this work. A HMM modeling approach is used in order to derive a novel feature-based representation of the EEG signal that characterizes the topographic information of the EEG. We use the HMM model in order to project the EEG data in the Fisher score space and use the Fisher score to describe the dynamics of the EEG topography sequence. The correspondence between this new feature and the fMRI is studied using CPLS. This methodology is applied for extracting features for the classification of a visual task. The results indicate that the proposed methodology is able to capture task related activations that can be used for the classification of mental tasks. Extensions on the proposed models are examined along with future research directions and applications

    Volitional Control of Lower-limb Prosthesis with Vision-assisted Environmental Awareness

    Get PDF
    Early and reliable prediction of user’s intention to change locomotion mode or speed is critical for a smooth and natural lower limb prosthesis. Meanwhile, incorporation of explicit environmental feedback can facilitate context aware intelligent prosthesis which allows seamless operation in a variety of gait demands. This dissertation introduces environmental awareness through computer vision and enables early and accurate prediction of intention to start, stop or change speeds while walking. Electromyography (EMG), Electroencephalography (EEG), Inertial Measurement Unit (IMU), and Ground Reaction Force (GRF) sensors were used to predict intention to start, stop or increase walking speed. Furthermore, it was investigated whether external emotional music stimuli could enhance the predictive capability of intention prediction methodologies. Application of advanced machine learning and signal processing techniques on pre-movement EEG resulted in an intention prediction system with low latency, high sensitivity and low false positive detection. Affective analysis of EEG suggested that happy music stimuli significantly (
    • …
    corecore