1,133 research outputs found

    Segmentation-aware Image Denoising Without Knowing True Segmentation

    Get PDF
    Recent works have discussed application-driven image restoration neural networks capable of not only removing noise in images but also preserving their semantic-aware details, making them suitable for various high-level computer vision tasks as the pre-processing step. However, such approaches require extra annotations for their high-level vision tasks in order to train the joint pipeline using hybrid losses, yet the availability of those annotations is often limited to a few image sets, thereby restricting the general applicability of these methods to simply denoise more unseen and unannotated images. Motivated by this, we propose a segmentation-aware image denoising model dubbed U-SAID, based on a novel unsupervised approach with a pixel-wise uncertainty loss. U-SAID does not require any ground-truth segmentation map, and thus can be applied to any image dataset. It is capable of generating denoised images with comparable or even better quality than that of its supervised counterpart and even more general “application-agnostic” denoisers, and its denoised results show stronger robustness for subsequent semantic segmentation tasks. Moreover, plugging its “universal” denoiser without fine-tuning, we demonstrate the superior generalizability of U-SAID in three-folds: (1) denoising unseen types of images; (2) denoising as preprocessing for segmenting unseen noisy images; and (3) denoising for unseen high-level tasks. Extensive experiments were conducted to assess the effectiveness and robustness of the proposed U-SAID model against various popular image sets

    DenoiSeg: Joint Denoising and Segmentation

    Full text link
    Microscopy image analysis often requires the segmentation of objects, but training data for this task is typically scarce and hard to obtain. Here we propose DenoiSeg, a new method that can be trained end-to-end on only a few annotated ground truth segmentations. We achieve this by extending Noise2Void, a self-supervised denoising scheme that can be trained on noisy images alone, to also predict dense 3-class segmentations. The reason for the success of our method is that segmentation can profit from denoising, especially when performed jointly within the same network. The network becomes a denoising expert by seeing all available raw data, while co-learning to segment, even if only a few segmentation labels are available. This hypothesis is additionally fueled by our observation that the best segmentation results on high quality (very low noise) raw data are obtained when moderate amounts of synthetic noise are added. This renders the denoising-task non-trivial and unleashes the desired co-learning effect. We believe that DenoiSeg offers a viable way to circumvent the tremendous hunger for high quality training data and effectively enables few-shot learning of dense segmentations.Comment: 10 pages, 4 figures, 2 pages supplement (4 figures

    Fully Unsupervised Image Denoising, Diversity Denoising and Image Segmentation with Limited Annotations

    Get PDF
    Understanding the processes of cellular development and the interplay of cell shape changes, division and migration requires investigation of developmental processes at the spatial resolution of single cell. Biomedical imaging experiments enable the study of dynamic processes as they occur in living organisms. While biomedical imaging is essential, a key component of exposing unknown biological phenomena is quantitative image analysis. Biomedical images, especially microscopy images, are usually noisy owing to practical limitations such as available photon budget, sample sensitivity, etc. Additionally, microscopy images often contain artefacts due to the optical aberrations in microscopes or due to imperfections in camera sensor and internal electronics. The noisy nature of images as well as the artefacts prohibit accurate downstream analysis such as cell segmentation. Although countless approaches have been proposed for image denoising, artefact removal and segmentation, supervised Deep Learning (DL) based content-aware algorithms are currently the best performing for all these tasks. Supervised DL based methods are plagued by many practical limitations. Supervised denoising and artefact removal algorithms require paired corrupted and high quality images for training. Obtaining such image pairs can be very hard and virtually impossible in most biomedical imaging applications owing to photosensitivity and the dynamic nature of the samples being imaged. Similarly, supervised DL based segmentation methods need copious amounts of annotated data for training, which is often very expensive to obtain. Owing to these restrictions, it is imperative to look beyond supervised methods. The objective of this thesis is to develop novel unsupervised alternatives for image denoising, and artefact removal as well as semisupervised approaches for image segmentation. The first part of this thesis deals with unsupervised image denoising and artefact removal. For unsupervised image denoising task, this thesis first introduces a probabilistic approach for training DL based methods using parametric models of imaging noise. Next, a novel unsupervised diversity denoising framework is presented which addresses the fundamentally non-unique inverse nature of image denoising by generating multiple plausible denoised solutions for any given noisy image. Finally, interesting properties of the diversity denoising methods are presented which make them suitable for unsupervised spatial artefact removal in microscopy and medical imaging applications. In the second part of this thesis, the problem of cell/nucleus segmentation is addressed. The focus is especially on practical scenarios where ground truth annotations for training DL based segmentation methods are scarcely available. Unsupervised denoising is used as an aid to improve segmentation performance in the presence of limited annotations. Several training strategies are presented in this work to leverage the representations learned by unsupervised denoising networks to enable better cell/nucleus segmentation in microscopy data. Apart from DL based segmentation methods, a proof-of-concept is introduced which views cell/nucleus segmentation from the perspective of solving a label fusion problem. This method, through limited human interaction, learns to choose the best possible segmentation for each cell/nucleus using only a pool of diverse (and possibly faulty) segmentation hypotheses as input. In summary, this thesis seeks to introduce new unsupervised denoising and artefact removal methods as well as semi-supervised segmentation methods which can be easily deployed to directly and immediately benefit biomedical practitioners with their research

    Image Denoising using Attention-Residual Convolutional Neural Networks

    Full text link
    During the image acquisition process, noise is usually added to the data mainly due to physical limitations of the acquisition sensor, and also regarding imprecisions during the data transmission and manipulation. In that sense, the resultant image needs to be processed to attenuate its noise without losing details. Non-learning-based strategies such as filter-based and noise prior modeling have been adopted to solve the image denoising problem. Nowadays, learning-based denoising techniques showed to be much more effective and flexible approaches, such as Residual Convolutional Neural Networks. Here, we propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN), and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN). The proposed methods try to learn the underlying noise expectation using an Attention-Residual mechanism. Experiments on public datasets corrupted by different levels of Gaussian and Poisson noise support the effectiveness of the proposed approaches against some state-of-the-art image denoising methods. ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.Comment: Published in: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI

    gACSON software for automated segmentation and morphology analyses of myelinated axons in 3D electron microscopy

    Get PDF
    Background and Objective: Advances in electron microscopy (EM) now allow three-dimensional (3D) imaging of hundreds of micrometers of tissue with nanometer-scale resolution, providing new opportunities to study the ultrastructure of the brain. In this work, we introduce a freely available Matlab-based gACSON software for visualization, segmentation, assessment, and morphology analysis of myelinated axons in 3D-EM volumes of brain tissue samples. Methods: The software is equipped with a graphical user interface (GUI). It automatically segments the intra-axonal space of myelinated axons and their corresponding myelin sheaths and allows manual segmentation, proofreading, and interactive correction of the segmented components. gACSON analyzes the morphology of myelinated axons, such as axonal diameter, axonal eccentricity, myelin thickness, or gratio. Results: We illustrate the use of the software by segmenting and analyzing myelinated axons in six 3DEM volumes of rat somatosensory cortex after sham surgery or traumatic brain injury (TBI). Our results suggest that the equivalent diameter of myelinated axons in somatosensory cortex was decreased in TBI animals five months after the injury. Conclusion: Our results indicate that gACSON is a valuable tool for visualization, segmentation, assessment, and morphology analysis of myelinated axons in 3D-EM volumes. It is freely available at https://github.com/AndreaBehan/g-ACSON under the MIT license. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )Peer reviewe

    Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction

    Full text link
    Diffuse gliomas are malignant brain tumors that grow widespread through the brain. The complex interactions between neoplastic cells and normal tissue, as well as the treatment-induced changes often encountered, make glioma tumor growth modeling challenging. In this paper, we present a novel end-to-end network capable of generating future tumor masks and realistic MRIs of how the tumor will look at any future time points for different treatment plans. Our approach is based on cutting-edge diffusion probabilistic models and deep-segmentation neural networks. We included sequential multi-parametric magnetic resonance images (MRI) and treatment information as conditioning inputs to guide the generative diffusion process. This allows for tumor growth estimates at any given time point. We trained the model using real-world postoperative longitudinal MRI data with glioma tumor growth trajectories represented as tumor segmentation maps over time. The model has demonstrated promising performance across a range of tasks, including the generation of high-quality synthetic MRIs with tumor masks, time-series tumor segmentations, and uncertainty estimates. Combined with the treatment-aware generated MRIs, the tumor growth predictions with uncertainty estimates can provide useful information for clinical decision-making.Comment: 13 pages, 10 figures, 2 tables, 2 agls, preprints in the IEEE trans. format for submission to IEEE-TM

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    corecore