58,803 research outputs found

    Segmentation via Manipulation

    Get PDF
    The motivation for this paper is the observation that a static scene that contains more than one object/part most of the time cannot be segmented only by vision or in general by any non-contact sensing. Exception to this is only the case when the objects/parts are physically separated so that the non-contact sensor can measure this separation or one knows a great deal of a priori knowledge about the objects (their geometry, material, etc.). We assume no such knowledge is available. Instead, we assume that the scene is reachable with a manipulator. Hence the problem represents a class of problems of segmentation that occur on an assembly line, bin picking, organizing a desk top, and the like. What are the typical properties of this class of problems? 1. The objects are rigid. Their size and weight is such that they are manipulable with an suitable end effector. Their numbers on the scene is such that in a reasonable time each piece can be examined and manipulated, i.e the complexity of the scene is bounded. 2. The scene is accessible to the sensors, i.e the whole scene is visible, although some parts may be occluded, and reachable by the manipulator. 3. There is a well defined goal which is detectable by the available sensors. Specifically the goal maybe: an empty scene, or an organized/ ordered scene

    GAPartNet: Cross-Category Domain-Generalizable Object Perception and Manipulation via Generalizable and Actionable Parts

    Full text link
    For years, researchers have been devoted to generalizable object perception and manipulation, where cross-category generalizability is highly desired yet underexplored. In this work, we propose to learn such cross-category skills via Generalizable and Actionable Parts (GAParts). By identifying and defining 9 GAPart classes (lids, handles, etc.) in 27 object categories, we construct a large-scale part-centric interactive dataset, GAPartNet, where we provide rich, part-level annotations (semantics, poses) for 8,489 part instances on 1,166 objects. Based on GAPartNet, we investigate three cross-category tasks: part segmentation, part pose estimation, and part-based object manipulation. Given the significant domain gaps between seen and unseen object categories, we propose a robust 3D segmentation method from the perspective of domain generalization by integrating adversarial learning techniques. Our method outperforms all existing methods by a large margin, no matter on seen or unseen categories. Furthermore, with part segmentation and pose estimation results, we leverage the GAPart pose definition to design part-based manipulation heuristics that can generalize well to unseen object categories in both the simulator and the real world. Our dataset, code, and demos are available on our project page.Comment: To appear in CVPR 2023 (Highlight

    Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

    Full text link
    With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    Improvised Salient Object Detection and Manipulation

    Full text link
    In case of salient subject recognition, computer algorithms have been heavily relied on scanning of images from top-left to bottom-right systematically and apply brute-force when attempting to locate objects of interest. Thus, the process turns out to be quite time consuming. Here a novel approach and a simple solution to the above problem is discussed. In this paper, we implement an approach to object manipulation and detection through segmentation map, which would help to desaturate or, in other words, wash out the background of the image. Evaluation for the performance is carried out using the Jaccard index against the well-known Ground-truth target box technique.Comment: 7 page

    LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes

    Full text link
    Deep neural network (DNN) architectures have been shown to outperform traditional pipelines for object segmentation and pose estimation using RGBD data, but the performance of these DNN pipelines is directly tied to how representative the training data is of the true data. Hence a key requirement for employing these methods in practice is to have a large set of labeled data for your specific robotic manipulation task, a requirement that is not generally satisfied by existing datasets. In this paper we develop a pipeline to rapidly generate high quality RGBD data with pixelwise labels and object poses. We use an RGBD camera to collect video of a scene from multiple viewpoints and leverage existing reconstruction techniques to produce a 3D dense reconstruction. We label the 3D reconstruction using a human assisted ICP-fitting of object meshes. By reprojecting the results of labeling the 3D scene we can produce labels for each RGBD image of the scene. This pipeline enabled us to collect over 1,000,000 labeled object instances in just a few days. We use this dataset to answer questions related to how much training data is required, and of what quality the data must be, to achieve high performance from a DNN architecture
    • …
    corecore