1,852 research outputs found

    Automated Vascular Smooth Muscle Segmentation, Reconstruction, Classification and Simulation on Whole-Slide Histology

    Get PDF
    Histology of the microvasculature depicts detailed characteristics relevant to tissue perfusion. One important histologic feature is the smooth muscle component of the microvessel wall, which is responsible for controlling vessel caliber. Abnormalities can cause disease and organ failure, as seen in hypertensive retinopathy, diabetic ischemia, Alzheimer’s disease and improper cardiovascular development. However, assessments of smooth muscle cell content are conventionally performed on selected fields of view on 2D sections, which may lead to measurement bias. We have developed a software platform for automated (1) 3D vascular reconstruction, (2) detection and segmentation of muscularized microvessels, (3) classification of vascular subtypes, and (4) simulation of function through blood flow modeling. Vessels were stained for α-actin using 3,3\u27-Diaminobenzidine, assessing both normal (n=9 mice) and regenerated vasculature (n=5 at day 14, n=4 at day 28). 2D locally adaptive segmentation involved vessel detection, skeletonization, and fragment connection. 3D reconstruction was performed using our novel nucleus landmark-based registration. Arterioles and venules were categorized using supervised machine learning based on texture and morphometry. Simulation of blood flow for the normal and regenerated vasculature was performed at baseline and during demand based on the structural measures obtained from the above tools. Vessel medial area and vessel wall thickness were found to be greater in the normal vasculature as compared to the regenerated vasculature (p\u3c0.001) and a higher density of arterioles was found in the regenerated tissue (p\u3c0.05). Validation showed: a Dice coefficient of 0.88 (compared to manual) for the segmentations, a 3D reconstruction target registration error of 4 ÎŒm, and area under the receiver operator curve of 0.89 for vessel classification. We found 89% and 67% decreases in the blood flow through the network for the regenerated vasculature during increased oxygen demand as compared to the normal vasculature, respectively for 14 and 28 days post-ischemia. We developed a software platform for automated vasculature histology analysis involving 3D reconstruction, segmentation, and arteriole vs. venule classification. This advanced the knowledge of conventional histology sampling compared to whole slide analysis, the morphological and density differences in the regenerated vasculature, and the effect of the differences on blood flow and function

    Tissue Phenomics for prognostic biomarker discovery in low- and intermediate-risk prostate cancer

    Get PDF
    Tissue Phenomics is the discipline of mining tissue images to identify patterns that are related to clinical outcome providing potential prognostic and predictive value. This involves the discovery process from assay development, image analysis, and data mining to the final interpretation and validation of the findings. Importantly, this process is not linear but allows backward steps and optimization loops over multiple sub-processes. We provide a detailed description of the Tissue Phenomics methodology while exemplifying each step on the application of prostate cancer recurrence prediction. In particular, we automatically identified tissue-based biomarkers having significant prognostic value for low-and intermediate-risk prostate cancer patients (Gleason scores 6-7b) after radical prostatectomy. We found that promising phenes were related to CD8(+) and CD68(+) cells in the microenvironment of cancerous glands in combination with the local micro-vascularization. Recurrence prediction based on the selected phenes yielded accuracies up to 83% thereby clearly outperforming prediction based on the Gleason score. Moreover, we compared different machine learning algorithms to combine the most relevant phenes resulting in increased accuracies of 88% for tumor progression prediction. These findings will be of potential use for future prognostic tests for prostate cancer patients and provide a proof-of-principle of the Tissue Phenomics approach

    A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    Get PDF
    Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 ”m-thick, paraffin-embedded serial sections digitized at 0.25 ”m/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (

    Whole Slide Quantification of Stromal Lymphatic Vessel Distribution and Peritumoral Lymphatic Vessel Density in Early Invasive Cervical Cancer: A Method Description

    Get PDF
    Peritumoral Lymphatic Vessel Density (LVD) is considered to be a predictive marker for the presence of lymph node metastases in cervical cancer. However, when LVD quantification relies on conventional optical microscopy and the hot spot technique, interobserver variability is significant and yields inconsistent conclusions. In this work, we describe an original method that applies computed image analysis to whole slide scanned tissue sections following immunohistochemical lymphatic vessel staining. This procedure allows to determine an objective LVD quantification as well as the lymphatic vessel distribution and its heterogeneity within the stroma surrounding the invasive tumor bundles. The proposed technique can be useful to better characterize lymphatic vessel interactions with tumor cells and could potentially impact on prognosis and therapeutic decisions

    Patch-based nonlinear image registration for gigapixel whole slide images

    Get PDF
    ProducciĂłn CientĂ­ficaImage registration of whole slide histology images allows the fusion of fine-grained information-like different immunohistochemical stains-from neighboring tissue slides. Traditionally, pathologists fuse this information by looking subsequently at one slide at a time. If the slides are digitized and accurately aligned at cell level, automatic analysis can be used to ease the pathologist's work. However, the size of those images exceeds the memory capacity of regular computers. Methods: We address the challenge to combine a global motion model that takes the physical cutting process of the tissue into account with image data that is not simultaneously globally available. Typical approaches either reduce the amount of data to be processed or partition the data into smaller chunks to be processed separately. Our novel method first registers the complete images on a low resolution with a nonlinear deformation model and later refines this result on patches by using a second nonlinear registration on each patch. Finally, the deformations computed on all patches are combined by interpolation to form one globally smooth nonlinear deformation. The NGF distance measure is used to handle multistain images. Results: The method is applied to ten whole slide image pairs of human lung cancer data. The alignment of 85 corresponding structures is measured by comparing manual segmentations from neighboring slides. Their offset improves significantly, by at least 15%, compared to the low-resolution nonlinear registration. Conclusion/Significance: The proposed method significantly improves the accuracy of multistain registration which allows us to compare different antibodies at cell level

    Showing their true colors: a practical approach to volume rendering from serial sections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In comparison to more modern imaging methods, conventional light microscopy still offers a range of substantial advantages with regard to contrast options, accessible specimen size, and resolution. Currently, tomographic image data in particular is most commonly visualized in three dimensions using volume rendering. To date, this method has only very rarely been applied to image stacks taken from serial sections, whereas surface rendering is still the most prevalent method for presenting such data sets three-dimensionally. The aim of this study was to develop standard protocols for volume rendering of image stacks of serial sections, while retaining the benefits of light microscopy such as resolution and color information.</p> <p>Results</p> <p>Here we provide a set of protocols for acquiring high-resolution 3D images of diverse microscopic samples through volume rendering based on serial light microscopical sections using the 3D reconstruction software Amira (Visage Imaging Inc.). We overcome several technical obstacles and show that these renderings are comparable in quality and resolution to 3D visualizations using other methods. This practical approach for visualizing 3D micro-morphology in full color takes advantage of both the sub-micron resolution of light microscopy and the specificity of histological stains, by combining conventional histological sectioning techniques, digital image acquisition, three-dimensional image filtering, and 3D image manipulation and visualization technologies.</p> <p>Conclusions</p> <p>We show that this method can yield "true"-colored high-resolution 3D views of tissues as well as cellular and sub-cellular structures and thus represents a powerful tool for morphological, developmental, and comparative investigations. We conclude that the presented approach fills an important gap in the field of micro-anatomical 3D imaging and visualization methods by combining histological resolution and differentiation of details with 3D rendering of whole tissue samples. We demonstrate the method on selected invertebrate and vertebrate specimens, and propose that reinvestigation of historical serial section material may be regarded as a special benefit.</p

    Three-dimensional imaging and reconstruction of the whole ovary and testis: a new frontier for the reproductive scientist.

    Get PDF
    AbstractThe 3D functional reconstruction of a whole organ or organism down to the single cell level and to the subcellular components and molecules is a major future scientific challenge. The recent convergence of advanced imaging techniques with an impressively increased computing power allowed early attempts to translate and combine 2D images and functional data to obtain in-silico organ 3D models. This review first describes the experimental pipeline required for organ 3D reconstruction: from the collection of 2D serial images obtained with light, confocal, light-sheet microscopy or tomography, followed by their registration, segmentation and subsequent 3D rendering. Then, we summarise the results of investigations performed so far by applying these 3D image analyses to the study of the female and male mammalian gonads. These studies highlight the importance of working towards a 3D in-silico model of the ovary and testis as a tool to gain insights into their biology during the phases of differentiation or adulthood, in normal or pathological conditions. Furthermore, the use of 3D imaging approaches opens to key technical improvements, ranging from image acquisition to optimisation and development of new processing tools, and unfolds novel possibilities for multidisciplinary research
    • 

    corecore