429 research outputs found

    Development of Healthcare Kiosk for Checking Heart Health

    Get PDF
    The main problem encountered nowadays in the health field, especially in health care is the growing number of population and the decreasing health facilities. In this regard, healthcare kiosk is used as an alternative to the health care facilities. Heart disease is a dangerous one which could threaten human life. Many people have died due to heart disease and the surgery itself is still very expensive. To analyze heart diseases, doctor usually takes a video of the heart movement using ultrasound equipment to distinguish between normal and abnormal case. The results of analysis vary depending on the accuracy and experience of each doctor so it is difficult to determine the actual situation. Therefore, a method using healthcare kiosk to check the heart health is needed to help doctor and improve the health care facilities. The aim of this research is to develop healthcare kiosk which can be used to check the heart health. This research method is divided into three main parts: firstly, preprocessing to clarify the quality of the image.In this section, the writers propose a Median High Boost Filter method which is a combined method of Median Filtering and High Boost Filtering. Secondly, segmentation is used to obtain local cavities of the heart. In this part, the writers propose using Triangle Equation that is a new method to be developed. Thirdly, classification using Partial Monte Carlo method and artificial neural network method; these methods are used to measure the area of the heart cavity and discover the possibility of cardiac abnormalities. Methods for detecting heart health are placed in the kiosk. Therefore, it is expected to facilitate and improve the healthcare facilities.Keywords: Healthcare kiosk, heart health, reprocessing, segmentation, classification

    An improved classification approach for echocardiograms embedding temporal information

    Get PDF
    Cardiovascular disease is an umbrella term for all diseases of the heart. At present, computer-aided echocardiogram diagnosis is becoming increasingly beneficial. For echocardiography, different cardiac views can be acquired depending on the location and angulations of the ultrasound transducer. Hence, the automatic echocardiogram view classification is the first step for echocardiogram diagnosis, especially for computer-aided system and even for automatic diagnosis in the future. In addition, heart views classification makes it possible to label images especially for large-scale echo videos, provide a facility for database management and collection. This thesis presents a framework for automatic cardiac viewpoints classification of echocardiogram video data. In this research, we aim to overcome the challenges facing this investigation while analyzing, recognizing and classifying echocardiogram videos from 3D (2D spatial and 1D temporal) space. Specifically, we extend 2D KAZE approach into 3D space for feature detection and propose a histogram of acceleration as feature descriptor. Subsequently, feature encoding follows before the application of SVM to classify echo videos. In addition, comparison with the state of the art methodologies also takes place, including 2D SIFT, 3D SIFT, and optical flow technique to extract temporal information sustained in the video images. As a result, the performance of 2D KAZE, 2D KAZE with Optical Flow, 3D KAZE, Optical Flow, 2D SIFT and 3D SIFT delivers accuracy rate of 89.4%, 84.3%, 87.9%, 79.4%, 83.8% and 73.8% respectively for the eight view classes of echo videos

    A New Feature Extraction Method for Classifying Heart Wall from Left Ventricle Cavity

    Get PDF
    Echocardiography is a method of examination with high-frequency sound waves to obtain images of heart organs. Examination of heart health conditions with echocardiography as an imaging method, serves to detect the potential for heart disease, thus that the right treatment from the evaluation results can be decided. Examination of the source of heart disease with echocardiography was performed using several views, namely the long axis, short axis, two-chamber, and four-chamber. However, the assessment of cardiac function is still carried out conventionally. Thus it is necessary to build a system that can assess cardiac function. This study proposes a feature extraction method for the classification of heart disease based on the left ventricular motion on the short-axis. In this method, feature extraction uses 24 good features for the process of tracking the movement of the left ventricle with optical flow. Each good feature produces four features, namely direction (negative direction and positive direction) and distance (negative distance and positive distance) from the results of left ventricular tracking and produces 96 attributes for the whole process. The features that have been obtained are then processed using several classification algorithms with validation techniques that are, k-folds, and leave one out. The result is a classification algorithm with a gradient boosting classifier method that has the best accuracy. Gradient boosting classifier produces accuracy values with validation techniques for k-folds 90.98%, and leave one out 93.23%. This shows that the gradient boosting classifier can be relied upon for the classification of heart disease using the proposed feature extraction method. In this study, we developed a new feature extraction method from the results of tracking the heart wall using optical flow. This algorithm can produce feature values from the tracking results that can be used to build a knowledge system for the classification of heart health conditions

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Automated assessment of echocardiographic image quality using deep convolutional neural networks

    Get PDF
    Myocardial ischemia tops the list of causes of death around the globe, but its diagnosis and early detection thrives on clinical echocardiography. Although echocardiography presents a huge advantage of a non-intrusive, low-cost point of care diagnosis, its image quality is inherently subjective with strong dependence on operators’ experience level and acquisition skill. In some countries, echo specialists are mandated to supplementary years of training to achieve ‘gold standard’ free-hand acquisition skill without which exacerbates the reliability of echocardiogram and increases possibility for misdiagnosis. These drawbacks pose significant challenges to adopting echocardiography as authoritative modalities for cardiac diagnosis. However, the prevailing and currently adopted solution is to manually carry out quality evaluation where an echocardiography specialist visually inspects several acquired images to make clinical decisions of its perceived quality and prognosis. This is a lengthening process and laced with variability of opinion consequently affection diagnostic responses. The goal of the research is to provide a multi-discipline, state-of-the-art solution that allows objective quality assessment of echocardiogram and to guarantee the reliability of clinical quantification processes. Computer graphic processing unit simulations, medical imaging analysis and deep convolutional neural network models were employed to achieve this goal. From a finite pool of echocardiographic patient datasets, 1650 random samples of echocardiogram cine-loops from different patients with age ranges from 17 and 85 years, who had undergone echocardiography between 2010 and 2020 were evaluated. We defined a set of pathological and anatomical criteria of image quality by which apical-four and parasternal long axis frames can be evaluated with feasibility for real-time optimization. The selected samples were annotated for multivariate model developments and validation of predicted quality score per frame. The outcome presents a robust artificial intelligence algorithm that indicate frames’ quality rating, real-time visualisation of element of quality and updates quality optimization in real-time. A prediction errors of 0.052, 0.062, 0.069, 0.056 for visibility, clarity, depth-gain, and foreshortening attributes were achieved, respectively. The model achieved a combined error rate of 3.6% with average prediction speed of 4.24 ms per frame. The novel method established a superior approach to two-dimensional image quality estimation, assessment, and clinical adequacy on acquisition of echocardiogram prior to quantification and diagnosis of myocardial infarction

    Post-processing approaches for the improvement of cardiac ultrasound B-mode images:a review

    Get PDF

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography
    • …
    corecore