1,377 research outputs found

    Shape from periodic texture using the eigenvectors of local affine distortion

    Get PDF
    This paper shows how the local slant and tilt angles of regularly textured curved surfaces can be estimated directly, without the need for iterative numerical optimization, We work in the frequency domain and measure texture distortion using the affine distortion of the pattern of spectral peaks. The key theoretical contribution is to show that the directions of the eigenvectors of the affine distortion matrices can be used to estimate local slant and tilt angles of tangent planes to curved surfaces. In particular, the leading eigenvector points in the tilt direction. Although not as geometrically transparent, the direction of the second eigenvector can be used to estimate the slant direction. The required affine distortion matrices are computed using the correspondences between spectral peaks, established on the basis of their energy ordering. We apply the method to a variety of real-world and synthetic imagery

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation

    Get PDF
    Copyright @ 2011 Shadi AlZubi et al. This article has been made available through the Brunel Open Access Publishing Fund.The experimental study presented in this paper is aimed at the development of an automatic image segmentation system for classifying region of interest (ROI) in medical images which are obtained from different medical scanners such as PET, CT, or MRI. Multiresolution analysis (MRA) using wavelet, ridgelet, and curvelet transforms has been used in the proposed segmentation system. It is particularly a challenging task to classify cancers in human organs in scanners output using shape or gray-level information; organs shape changes throw different slices in medical stack and the gray-level intensity overlap in soft tissues. Curvelet transform is a new extension of wavelet and ridgelet transforms which aims to deal with interesting phenomena occurring along curves. Curvelet transforms has been tested on medical data sets, and results are compared with those obtained from the other transforms. Tests indicate that using curvelet significantly improves the classification of abnormal tissues in the scans and reduce the surrounding noise

    A graph-spectral approach to shape-from-shading

    Get PDF
    In this paper, we explore how graph-spectral methods can be used to develop a new shape-from-shading algorithm. We characterize the field of surface normals using a weight matrix whose elements are computed from the sectional curvature between different image locations and penalize large changes in surface normal direction. Modeling the blocks of the weight matrix as distinct surface patches, we use a graph seriation method to find a surface integration path that maximizes the sum of curvature-dependent weights and that can be used for the purposes of height reconstruction. To smooth the reconstructed surface, we fit quadrics to the height data for each patch. The smoothed surface normal directions are updated ensuring compliance with Lambert's law. The processes of height recovery and surface normal adjustment are interleaved and iterated until a stable surface is obtained. We provide results on synthetic and real-world imagery

    Cross-Platform Presentation of Interactive Volumetric Imagery

    Get PDF
    Volume data is useful across many disciplines, not just medicine. Thus, it is very important that researchers have a simple and lightweight method of sharing and reproducing such volumetric data. In this paper, we explore some of the challenges associated with volume rendering, both from a classical sense and from the context of Web3D technologies. We describe and evaluate the pro- posed X3D Volume Rendering Component and its associated styles for their suitability in the visualization of several types of image data. Additionally, we examine the ability for a minimal X3D node set to capture provenance and semantic information from outside ontologies in metadata and integrate it with the scene graph

    3D-POLY: A Robot Vision System for Recognizing Objects in Occluded Environments

    Get PDF
    The two factors that determine the time complexity associated with model-driven interpretation of range maps are: I) the particular strategy used for the generation of object hypotheses; and 2) the manner in which both the model and the sensed data are organized, data organization being a primary determinant of the efficiency of verification of a given hypothesis. In this report, we present 3D-POLY, a working system for recognizing objects in the presence of occlusion and against cluttered backgrounds. The time complexity of this system is only O(n2) for single object recognition, where n is the number of features on the object. The most novel aspect of this system is the manner in which the feature data are organized for the models. We use a data structure called the feature sphere for the purpose. We will present efficient algorithms for assigning a feature to its proper place on a feature sphere, and for extracting the neighbors of a given feature from the feature sphere representation. For hypothesis generation, we use local feature sets, a notion similar to those used before us by Bolles, Shirai and others. The combination of the feature sphere idea for streamlining verification and the local feature sets for hypothesis generation results in a system whose time complexity has a polynomial bound. In addition to recognizing objects in occluded environments, 3D-POLY also possesses model learning capability. Model learning consists of looking at a model object from different views and integrating the resulting information. The 3D-POLY system also contains utilities for range image segmentation and classification of scene surfaces

    A Framework for Directional and Higher-Order Reconstruction in Photoacoustic Tomography

    Get PDF
    Photoacoustic tomography is a hybrid imaging technique that combines high optical tissue contrast with high ultrasound resolution. Direct reconstruction methods such as filtered backprojection, time reversal and least squares suffer from curved line artefacts and blurring, especially in case of limited angles or strong noise. In recent years, there has been great interest in regularised iterative methods. These methods employ prior knowledge on the image to provide higher quality reconstructions. However, easy comparisons between regularisers and their properties are limited, since many tomography implementations heavily rely on the specific regulariser chosen. To overcome this bottleneck, we present a modular reconstruction framework for photoacoustic tomography. It enables easy comparisons between regularisers with different properties, e.g. nonlinear, higher-order or directional. We solve the underlying minimisation problem with an efficient first-order primal-dual algorithm. Convergence rates are optimised by choosing an operator dependent preconditioning strategy. Our reconstruction methods are tested on challenging 2D synthetic and experimental data sets. They outperform direct reconstruction approaches for strong noise levels and limited angle measurements, offering immediate benefits in terms of acquisition time and quality. This work provides a basic platform for the investigation of future advanced regularisation methods in photoacoustic tomography.Comment: submitted to "Physics in Medicine and Biology". Changes from v1 to v2: regularisation with directional wavelet has been added; new experimental tests have been include

    Multimodal Range Image Segmentation

    Get PDF

    Recovery of surface orientation from diffuse polarization

    Get PDF
    When unpolarized light is reflected from a smooth dielectric surface, it becomes partially polarized. This is due to the orientation of dipoles induced in the reflecting medium and applies to both specular and diffuse reflection. This paper is concerned with exploiting polarization by surface reflection, using images of smooth dielectric objects, to recover surface normals and, hence, height. This paper presents the underlying physics of polarization by reflection, starting with the Fresnel equations. These equations are used to interpret images taken with a linear polarizer and digital camera, revealing the shape of the objects. Experimental results are presented that illustrate that the technique is accurate near object limbs, as the theory predicts, with less precise, but still useful, results elsewhere. A detailed analysis of the accuracy of the technique for a variety of materials is presented. A method for estimating refractive indices using a laser and linear polarizer is also given

    Model-based segmentation and registration of multimodal medical images

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore