45 research outputs found

    Automatic Detection of Vasculature from the Images of Human Retina Using CLAHE and Bitplane Decomposition

    Get PDF
    Retinal blood vessel detection and extraction is an essential step in understanding several eye related pathologies. It is the key in automatic screening systems for retinal abnormalities. We present a novel yet simple approach to the detection and segmentation of vasculature from the fundus images of the human retina. For the detection and extraction of blood vessels, the green channel of the image is separated. The green channel is preprocessed for a better contrast by using contrast limited adaptive histogram equalization (CLAHE) and mathematical morphology. On applying bitplane decomposition, bitplane 2 is found to carry important information on the topology of retinal vasculature. A series of morphological operations on bitplane 2 segment the vasculature accurately. The proposed algorithm is computationally simple and does not require a prior knowledge of other retinal features like optic disc and macula. The algorithm has been evaluated on a subset of MESSIDOR and DRIVE image databases with various visual qualities. Robustness with respect to changes in the parameters of the algorithm has been examined.

    Retinal Vessels Segmentation Techniques and Algorithms: A Survey

    Get PDF
    Retinal vessels identification and localization aim to separate the different retinal vasculature structure tissues, either wide or narrow ones, from the fundus image background and other retinal anatomical structures such as optic disc, macula, and abnormal lesions. Retinal vessels identification studies are attracting more and more attention in recent years due to non-invasive fundus imaging and the crucial information contained in vasculature structure which is helpful for the detection and diagnosis of a variety of retinal pathologies included but not limited to: Diabetic Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degeneration (AMD). With the development of almost two decades, the innovative approaches applying computer-aided techniques for segmenting retinal vessels are becoming more and more crucial and coming closer to routine clinical applications. The purpose of this paper is to provide a comprehensive overview for retinal vessels segmentation techniques. Firstly, a brief introduction to retinal fundus photography and imaging modalities of retinal images is given. Then, the preprocessing operations and the state of the art methods of retinal vessels identification are introduced. Moreover, the evaluation and validation of the results of retinal vessels segmentation are discussed. Finally, an objective assessment is presented and future developments and trends are addressed for retinal vessels identification techniques.https://doi.org/10.3390/app802015

    A Multi-Anatomical Retinal Structure Segmentation System For Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding

    Get PDF
    Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue to detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This thesis proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogenous anatomical structures

    Retinal vessel segmentation using textons

    Get PDF
    Segmenting vessels from retinal images, like segmentation in many other medical image domains, is a challenging task, as there is no unified way that can be adopted to extract the vessels accurately. However, it is the most critical stage in automatic assessment of various forms of diseases (e.g. Glaucoma, Age-related macular degeneration, diabetic retinopathy and cardiovascular diseases etc.). Our research aims to investigate retinal image segmentation approaches based on textons as they provide a compact description of texture that can be learnt from a training set. This thesis presents a brief review of those diseases and also includes their current situations, future trends and techniques used for their automatic diagnosis in routine clinical applications. The importance of retinal vessel segmentation is particularly emphasized in such applications. An extensive review of previous work on retinal vessel segmentation and salient texture analysis methods is presented. Five automatic retinal vessel segmentation methods are proposed in this thesis. The first method focuses on addressing the problem of removing pathological anomalies (Drusen, exudates) for retinal vessel segmentation, which have been identified by other researchers as a problem and a common source of error. The results show that the modified method shows some improvement compared to a previously published method. The second novel supervised segmentation method employs textons. We propose a new filter bank (MR11) that includes bar detectors for vascular feature extraction and other kernels to detect edges and photometric variations in the image. The k-means clustering algorithm is adopted for texton generation based on the vessel and non-vessel elements which are identified by ground truth. The third improved supervised method is developed based on the second one, in which textons are generated by k-means clustering and texton maps representing vessels are derived by back projecting pixel clusters onto hand labelled ground truth. A further step is implemented to ensure that the best combinations of textons are represented in the map and subsequently used to identify vessels in the test set. The experimental results on two benchmark datasets show that our proposed method performs well compared to other published work and the results of human experts. A further test of our system on an independent set of optical fundus images verified its consistent performance. The statistical analysis on experimental results also reveals that it is possible to train unified textons for retinal vessel segmentation. In the fourth method a novel scheme using Gabor filter bank for vessel feature extraction is proposed. The ii method is inspired by the human visual system. Machine learning is used to optimize the Gabor filter parameters. The experimental results demonstrate that our method significantly enhances the true positive rate while maintaining a level of specificity that is comparable with other approaches. Finally, we proposed a new unsupervised texton based retinal vessel segmentation method using derivative of SIFT and multi-scale Gabor filers. The lack of sufficient quantities of hand labelled ground truth and the high level of variability in ground truth labels amongst experts provides the motivation for this approach. The evaluation results reveal that our unsupervised segmentation method is comparable with the best other supervised methods and other best state of the art methods

    Segmentation and Characterization of Small Retinal Vessels in Fundus Images Using the Tensor Voting Approach

    Get PDF
    RÉSUMÉ La rétine permet de visualiser facilement une partie du réseau vasculaire humain. Elle offre ainsi un aperçu direct sur le développement et le résultat de certaines maladies liées au réseau vasculaire dans son entier. Chaque complication visible sur la rétine peut avoir un impact sur la capacité visuelle du patient. Les plus petits vaisseaux sanguins sont parmi les premières structures anatomiques affectées par la progression d’une maladie, être capable de les analyser est donc crucial. Les changements dans l’état, l’aspect, la morphologie, la fonctionnalité, ou même la croissance des petits vaisseaux indiquent la gravité des maladies. Le diabète est une maladie métabolique qui affecte des millions de personnes autour du monde. Cette maladie affecte le taux de glucose dans le sang et cause des changements pathologiques dans différents organes du corps humain. La rétinopathie diabétique décrit l’en- semble des conditions et conséquences du diabète au niveau de la rétine. Les petits vaisseaux jouent un rôle dans le déclenchement, le développement et les conséquences de la rétinopa- thie. Dans les dernières étapes de cette maladie, la croissance des nouveaux petits vaisseaux, appelée néovascularisation, présente un risque important de provoquer la cécité. Il est donc crucial de détecter tous les changements qui ont lieu dans les petits vaisseaux de la rétine dans le but de caractériser les vaisseaux sains et les vaisseaux anormaux. La caractérisation en elle-même peut faciliter la détection locale d’une rétinopathie spécifique. La segmentation automatique des structures anatomiques comme le réseau vasculaire est une étape cruciale. Ces informations peuvent être fournies à un médecin pour qu’elles soient considérées lors de son diagnostic. Dans les systèmes automatiques d’aide au diagnostic, le rôle des petits vaisseaux est significatif. Ne pas réussir à les détecter automatiquement peut conduire à une sur-segmentation du taux de faux positifs des lésions rouges dans les étapes ultérieures. Les efforts de recherche se sont concentrés jusqu’à présent sur la localisation précise des vaisseaux de taille moyenne. Les modèles existants ont beaucoup plus de difficultés à extraire les petits vaisseaux sanguins. Les modèles existants ne sont pas robustes à la grande variance d’apparence des vaisseaux ainsi qu’à l’interférence avec l’arrière-plan. Les modèles de la littérature existante supposent une forme générale qui n’est pas suffisante pour s’adapter à la largeur étroite et la courbure qui caractérisent les petits vaisseaux sanguins. De plus, le contraste avec l’arrière-plan dans les régions des petits vaisseaux est très faible. Les méthodes de segmentation ou de suivi produisent des résultats fragmentés ou discontinus. Par ailleurs, la segmentation des petits vaisseaux est généralement faite aux dépends de l’amplification du bruit. Les modèles déformables sont inadéquats pour segmenter les petits vaisseaux. Les forces utilisées ne sont pas assez flexibles pour compenser le faible contraste, la largeur, et vii la variance des vaisseaux. Enfin, les approches de type apprentissage machine nécessitent un entraînement avec une base de données étiquetée. Il est très difficile d’obtenir ces bases de données dans le cas des petits vaisseaux. Cette thèse étend les travaux de recherche antérieurs en fournissant une nouvelle mé- thode de segmentation des petits vaisseaux rétiniens. La détection de ligne à échelles multiples (MSLD) est une méthode récente qui démontre une bonne performance de segmentation dans les images de la rétine, tandis que le vote tensoriel est une méthode proposée pour reconnecter les pixels. Une approche combinant un algorithme de détection de ligne et de vote tensoriel est proposée. L’application des détecteurs de lignes a prouvé son efficacité à segmenter les vais- seaux de tailles moyennes. De plus, les approches d’organisation perceptuelle comme le vote tensoriel ont démontré une meilleure robustesse en combinant les informations voisines d’une manière hiérarchique. La méthode de vote tensoriel est plus proche de la perception humain que d’autres modèles standards. Comme démontré dans ce manuscrit, c’est un outil pour segmenter les petits vaisseaux plus puissant que les méthodes existantes. Cette combinaison spécifique nous permet de surmonter les défis de fragmentation éprouvés par les méthodes de type modèle déformable au niveau des petits vaisseaux. Nous proposons également d’utiliser un seuil adaptatif sur la réponse de l’algorithme de détection de ligne pour être plus robuste aux images non-uniformes. Nous illustrons également comment une combinaison des deux méthodes individuelles, à plusieurs échelles, est capable de reconnecter les vaisseaux sur des distances variables. Un algorithme de reconstruction des vaisseaux est également proposé. Cette dernière étape est nécessaire car l’information géométrique complète est requise pour pouvoir utiliser la segmentation dans un système d’aide au diagnostic. La segmentation a été validée sur une base de données d’images de fond d’oeil à haute résolution. Cette base contient des images manifestant une rétinopathie diabétique. La seg- mentation emploie des mesures de désaccord standards et aussi des mesures basées sur la perception. En considérant juste les petits vaisseaux dans les images de la base de données, l’amélioration dans le taux de sensibilité que notre méthode apporte par rapport à la méthode standard de détection multi-niveaux de lignes est de 6.47%. En utilisant les mesures basées sur la perception, l’amélioration est de 7.8%. Dans une seconde partie du manuscrit, nous proposons également une méthode pour caractériser les rétines saines ou anormales. Certaines images contiennent de la néovascula- risation. La caractérisation des vaisseaux en bonne santé ou anormale constitue une étape essentielle pour le développement d’un système d’aide au diagnostic. En plus des défis que posent les petits vaisseaux sains, les néovaisseaux démontrent eux un degré de complexité encore plus élevé. Ceux-ci forment en effet des réseaux de vaisseaux à la morphologie com- plexe et inhabituelle, souvent minces et à fortes courbures. Les travaux existants se limitent viii à l’utilisation de caractéristiques de premier ordre extraites des petits vaisseaux segmentés. Notre contribution est d’utiliser le vote tensoriel pour isoler les jonctions vasculaires et d’uti- liser ces jonctions comme points d’intérêts. Nous utilisons ensuite une statistique spatiale de second ordre calculée sur les jonctions pour caractériser les vaisseaux comme étant sains ou pathologiques. Notre méthode améliore la sensibilité de la caractérisation de 9.09% par rapport à une méthode de l’état de l’art. La méthode développée s’est révélée efficace pour la segmentation des vaisseaux réti- niens. Des tenseurs d’ordre supérieur ainsi que la mise en œuvre d’un vote par tenseur via un filtrage orientable pourraient être étudiés pour réduire davantage le temps d’exécution et résoudre les défis encore présents au niveau des jonctions vasculaires. De plus, la caractéri- sation pourrait être améliorée pour la détection de la rétinopathie proliférative en utilisant un apprentissage supervisé incluant des cas de rétinopathie diabétique non proliférative ou d’autres pathologies. Finalement, l’incorporation des méthodes proposées dans des systèmes d’aide au diagnostic pourrait favoriser le dépistage régulier pour une détection précoce des rétinopathies et d’autres pathologies oculaires dans le but de réduire la cessité au sein de la population.----------ABSTRACT As an easily accessible site for the direct observation of the circulation system, human retina can offer a unique insight into diseases development or outcome. Retinal vessels are repre- sentative of the general condition of the whole systematic circulation, and thus can act as a "window" to the status of the vascular network in the whole body. Each complication on the retina can have an adverse impact on the patient’s sight. In this direction, small vessels’ relevance is very high as they are among the first anatomical structures that get affected as diseases progress. Moreover, changes in the small vessels’ state, appearance, morphology, functionality, or even growth indicate the severity of the diseases. This thesis will focus on the retinal lesions due to diabetes, a serious metabolic disease affecting millions of people around the world. This disorder disturbs the natural blood glucose levels causing various pathophysiological changes in different systems across the human body. Diabetic retinopathy is the medical term that describes the condition when the fundus and the retinal vessels are affected by diabetes. As in other diseases, small vessels play a crucial role in the onset, the development, and the outcome of the retinopathy. More importantly, at the latest stage, new small vessels, or neovascularizations, growth constitutes a factor of significant risk for blindness. Therefore, there is a need to detect all the changes that occur in the small retinal vessels with the aim of characterizing the vessels to healthy or abnormal. The characterization, in turn, can facilitate the detection of a specific retinopathy locally, like the sight-threatening proliferative diabetic retinopathy. Segmentation techniques can automatically isolate important anatomical structures like the vessels, and provide this information to the physician to assist him in the final decision. In comprehensive systems for the automatization of DR detection, small vessels role is significant as missing them early in a CAD pipeline might lead to an increase in the false positive rate of red lesions in subsequent steps. So far, the efforts have been concentrated mostly on the accurate localization of the medium range vessels. In contrast, the existing models are weak in case of the small vessels. The required generalization to adapt an existing model does not allow the approaches to be flexible, yet robust to compensate for the increased variability in the appearance as well as the interference with the background. So far, the current template models (matched filtering, line detection, and morphological processing) assume a general shape for the vessels that is not enough to approximate the narrow, curved, characteristics of the small vessels. Additionally, due to the weak contrast in the small vessel regions, the current segmentation and the tracking methods produce fragmented or discontinued results. Alternatively, the small vessel segmentation can be accomplished at the expense of x background noise magnification, in the case of using thresholding or the image derivatives methods. Furthermore, the proposed deformable models are not able to propagate a contour to the full extent of the vasculature in order to enclose all the small vessels. The deformable model external forces are ineffective to compensate for the low contrast, the low width, the high variability in the small vessel appearance, as well as the discontinuities. Internal forces, also, are not able to impose a global shape constraint to the contour that could be able to approximate the variability in the appearance of the vasculature in different categories of vessels. Finally, machine learning approaches require the training of a classifier on a labelled set. Those sets are difficult to be obtained, especially in the case of the smallest vessels. In the case of the unsupervised methods, the user has to predefine the number of clusters and perform an effective initialization of the cluster centers in order to converge to the global minimum. This dissertation expanded the previous research work and provides a new segmentation method for the smallest retinal vessels. Multi-scale line detection (MSLD) is a recent method that demonstrates good segmentation performance in the retinal images, while tensor voting is a method first proposed for reconnecting pixels. For the first time, we combined the line detection with the tensor voting framework. The application of the line detectors has been proved an effective way to segment medium-sized vessels. Additionally, perceptual organization approaches like tensor voting, demonstrate increased robustness by combining information coming from the neighborhood in a hierarchical way. Tensor voting is closer than standard models to the way human perception functions. As we show, it is a more powerful tool to segment small vessels than the existing methods. This specific combination allows us to overcome the apparent fragmentation challenge of the template methods at the smallest vessels. Moreover, we thresholded the line detection response adaptively to compensate for non-uniform images. We also combined the two individual methods in a multi-scale scheme in order to reconnect vessels at variable distances. Finally, we reconstructed the vessels from their extracted centerlines based on pixel painting as complete geometric information is required to be able to utilize the segmentation in a CAD system. The segmentation was validated on a high-resolution fundus image database that in- cludes diabetic retinopathy images of varying stages, using standard discrepancy as well as perceptual-based measures. When only the smallest vessels are considered, the improve- ments in the sensitivity rate for the database against the standard multi-scale line detection method is 6.47%. For the perceptual-based measure, the improvement is 7.8% against the basic method. The second objective of the thesis was to implement a method for the characterization of isolated retinal areas into healthy or abnormal cases. Some of the original images, from which xi these patches are extracted, contain neovascularizations. Investigation of image features for the vessels characterization to healthy or abnormal constitutes an essential step in the direction of developing CAD system for the automatization of DR screening. Given that the amount of data will significantly increase under CAD systems, the focus on this category of vessels can facilitate the referral of sight-threatening cases to early treatment. In addition to the challenges that small healthy vessels pose, neovessels demonstrate an even higher degree of complexity as they form networks of convolved, twisted, looped thin vessels. The existing work is limited to the use of first-order characteristics extracted from the small segmented vessels that limits the study of patterns. Our contribution is in using the tensor voting framework to isolate the retinal vascular junctions and in turn using those junctions as points of interests. Second, we exploited second-order statistics computed on the junction spatial distribution to characterize the vessels as healthy or neovascularizations. In fact, the second-order spatial statistics extracted from the junction distribution are combined with widely used features to improve the characterization sensitivity by 9.09% over the state of art. The developed method proved effective for the segmentation of the retinal vessels. Higher order tensors along with the implementation of tensor voting via steerable filtering could be employed to further reduce the execution time, and resolve the challenges at vascular junctions. Moreover, the characterization could be advanced to the detection of prolifera- tive retinopathy by extending the supervised learning to include non-proliferative diabetic retinopathy cases or other pathologies. Ultimately, the incorporation of the methods into CAD systems could facilitate screening for the effective reduction of the vision-threatening diabetic retinopathy rates, or the early detection of other than ocular pathologies

    Identification of Diabetic Retinopathy in Retinal Images using Support Vector Machine

    Get PDF
    Abstract -Retinal vessel segmentation algorithms are a fundamental component of automatic retinal disease screening systems. It helps in not only detecting the retinal diseases but also can help to recover that disease in time like diabetic retinopathy, retinopathy of prematurity (ROP) etc. Supervised Retinal vessel segmentation algorithms are most widely research and studied by researcher. As more research work is published on supervised algorithm we are decided to work on this paper. In this work we are simply examines the supervised blood vessel segmentation methodologies in two dimensional retinal images acquired from a fundus camera along with a survey along with provide the most of the databases which are locally present for this work. The aim of this paper is to review and analyze the supervised retinal vessel extraction algorithms, techniques and methodologies, giving a brief description, highlighting the key points and the performance measures given by the different authors in systematic form. We trying to provide the reader a framework for the existing research; to introduce the all supervised retinal vessel segmentation algorithms along with databases which are locally present over for work and future directions and summarize the survey. The performance of algorithms is compared and analyzed on two publicly available databases (DRIVE and STARE) of retinal images using a number of measures which include accuracy, true positive rate, false positive rate, sensitivity, specificity and area under receiver operating characteristic (ROC) curve
    corecore