1,339 research outputs found

    Deep Neural Network with l2-norm Unit for Brain Lesions Detection

    Full text link
    Automated brain lesions detection is an important and very challenging clinical diagnostic task because the lesions have different sizes, shapes, contrasts, and locations. Deep Learning recently has shown promising progress in many application fields, which motivates us to apply this technology for such important problem. In this paper, we propose a novel and end-to-end trainable approach for brain lesions classification and detection by using deep Convolutional Neural Network (CNN). In order to investigate the applicability, we applied our approach on several brain diseases including high and low-grade glioma tumor, ischemic stroke, Alzheimer diseases, by which the brain Magnetic Resonance Images (MRI) have been applied as an input for the analysis. We proposed a new operating unit which receives features from several projections of a subset units of the bottom layer and computes a normalized l2-norm for next layer. We evaluated the proposed approach on two different CNN architectures and number of popular benchmark datasets. The experimental results demonstrate the superior ability of the proposed approach.Comment: Accepted for presentation in ICONIP-201

    Visual and Contextual Modeling for the Detection of Repeated Mild Traumatic Brain Injury.

    Get PDF
    Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities, which appear as low contrast MR regions. This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care

    Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

    Get PDF
    Machine learning-based imaging diagnostics has recently reached or even superseded the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS). MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients and healthy controls (n = 147). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of..

    Multiple sclerosis Lesion Detection via Machine Learning Algorithm based on converting 3D to 2D MRI images

    Get PDF
    In the twenty first century, there have been various scientific discoveries which have helped in addressing some of the fundamental health issues. Specifically, the discovery of machines which are able to assess the internal conditions of individuals has been a significant boost in the medical field. This paper or case study is the continuation of a previous research which aimed to create artificial models using support vector machines (SVM) to classify MS and normal brain MRI images, analyze the effectiveness of these models and their potential to use them in Multiple Sclerosis (MS) diagnosis. In the previous study presented at the Cognitive InfoCommunication (CogInfoCom 2019) conference, we intend to show that 3D images can be converted into 2D and by considering machine learning techniques and SVM tools. The previous paper concluded that SVM is a potential method which can be involved during MS diagnosis, however, in order to confirm this statement more research and other potentially effective methods should be included in the research and need to be tested. First, this study continues the research of SVM used for classification and Cellular Learning Automata (CLA), then it expands the research to other method such as Artificial Neural Networks (ANN) and k-Nearest Neighbor (k-NN) and then compares the results of these

    TEXTURAL CLASSIFICATION OF MULTIPLE SCLEROSISLESIONS IN MULTIMODAL MRI VOLUMES

    Get PDF
    Background and objectives:Multiple Sclerosis is a common relapsing demyelinating diseasecausing the significant degradation of cognitive and motor skills and contributes towards areduced life expectancy of 5 to 10 years. The identification of Multiple Sclerosis Lesionsat early stages of a patient’s life can play a significant role in the diagnosis, treatment andprognosis for that individual. In recent years the process of disease detection has been aidedthrough the implementation of radiomic pipelines for texture extraction and classificationutilising Computer Vision and Machine Learning techniques. Eight Multiple Sclerosis Patient datasets have been supplied, each containing one standardclinical T2 MRI sequence and four diffusion-weighted sequences (T2, FA, ADC, AD, RD).This work proposes a Multimodal Multiple Sclerosis Lesion segmentation methodology util-ising supervised texture analysis, feature selection and classification. Three Machine Learningmodels were applied to Multimodal MRI data and tested using unseen patient datasets to eval-uate the classification performance of various extracted features, feature selection algorithmsand classifiers to MRI volumes uncommonly applied to MS Lesion detection. Method: First Order Statistics, Haralick Texture Features, Gray-Level Run-Lengths, His-togram of Oriented Gradients and Local Binary Patterns were extracted from MRI volumeswhich were minimally pre-processed using a skull stripping and background removal algorithm.mRMR and LASSO feature selection algorithms were applied to identify a subset of rankingsfor use in Machine Learning using Support Vector Machine, Random Forests and ExtremeLearning Machine classification. Results: ELM achieved a top slice classification accuracy of 85% while SVM achieved 79%and RF 78%. It was found that combining information from all MRI sequences increased theclassification performance when analysing unseen T2 scans in almost all cases. LASSO andmRMR feature selection methods failed to increase accuracy, and the highest-scoring groupof features were Haralick Texture Features, derived from Grey-Level Co-occurrence matrices

    SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis

    Get PDF
    Esclerosi múltiple; Classificació d'aprenentatge automàtic; Selecció de funcionsEsclerosis múltiple; Clasificación de aprendizaje automático; Selección de característicasMultiple sclerosis; Machine learning classification; Feature selectionMachine learning classification is an attractive approach to automatically differentiate patients from healthy subjects, and to predict future disease outcomes. A clinically isolated syndrome (CIS) is often the first presentation of multiple sclerosis (MS), but it is difficult at onset to predict who will have a second relapse and hence convert to clinically definite MS. In this study, we thus aimed to distinguish CIS converters from non-converters at onset of a CIS, using recursive feature elimination and weight averaging with support vector machines. We also sought to assess the influence of cohort size and cross-validation methods on the accuracy estimate of the classification. We retrospectively collected 400 patients with CIS from six European MAGNIMS MS centres. Patients underwent brain MRI at onset of a CIS according to local standard-of-care protocols. The diagnosis of clinically definite MS at one-year follow-up was the standard against which the accuracy of the model was tested. For each patient, we derived MRI-based features, such as grey matter probability, white matter lesion load, cortical thickness, and volume of specific cortical and white matter regions. Features with little contribution to the classification model were removed iteratively through an interleaved sample bootstrapping and feature averaging approach. Classification of CIS outcome at one-year follow-up was performed with 2-fold, 5-fold, 10-fold and leave-one-out cross-validation for each centre cohort independently and in all patients together. The estimated classification accuracy across centres ranged from 64.9% to 88.1% using 2-fold cross-validation and from 73% to 92.9% using leave-one-out cross-validation. The classification accuracy estimate was higher in single-centre, smaller data sets than in combinations of data sets, being the lowest when all patients were merged together. Regional MRI features such as WM lesions, grey matter probability in the thalamus and the precuneus or cortical thickness in the cuneus and inferior temporal gyrus predicted the occurrence of a second relapse in patients at onset of a CIS using support vector machines. The increased accuracy estimate of the classification achieved with smaller and single-centre samples may indicate a model bias (overfitting) when data points were limited, but also more homogeneous. We provide an overview of classifier performance from a range of cross-validation schemes to give insight into the variability across schemes. The proposed recursive feature elimination approach with weight averaging can be used both in single- and multi-centre data sets in order to bridge the gap between group-level comparisons and making predictions for individual patients.This project received funding from the European Union's Horizon2020 Research and Innovation Program EuroPOND under grant agreement number 666992, and it was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. We thank all participating partners of the MAGNIMS study group for sharing their data with us
    • …
    corecore