394 research outputs found

    Segmentation of fluorescence microscopy images using three dimensional active contours with inhomogeneity correction

    Get PDF
    Image segmentation is an important step in the quantitative analysis of fluorescence microscopy data. Since fluorescence microscopy volumes suffer from intensity inhomogeneity, low image contrast and limited depth resolution, poor edge details, and irregular structure shape, segmentation still remains a challenging problem. This paper describes a nuclei segmentation method for fluorescence microscopy based on the use of three dimensional (3D) active contours with inhomogeneity correction. The correction information utilizes 3D volume information while addressing intensity inhomogeneity across vertical and horizontal directions. Experimental results demonstrate that the proposed method achieves better performance than other reported methods

    Tubule Segmentation of Fluorescence Microscopy Images Based on Convolutional Neural Networks With Inhomogeneity Correction

    Get PDF
    Fluorescence microscopy has become a widely used tool for studying various biological structures of in vivo tissue or cells. However, quantitative analysis of these biological structures remains a challenge due to their complexity which is exacerbated by distortions caused by lens aberrations and light scattering. Moreover, manual quantification of such image volumes is an intractable and error-prone process, making the need for automated image analysis methods crucial. This paper describes a segmentation method for tubular structures in fluorescence microscopy images using convolutional neural networks with data augmentation and inhomogeneity correction. The segmentation results of the proposed method are visually and numerically compared with other microscopy segmentation methods. Experimental results indicate that the proposed method has better performance with correctly segmenting and identifying multiple tubular structures compared to other methods

    Nuclei Segmentation of Fluorescence Microscopy Images Using Three Dimensional Convolutional Neural Networks

    Get PDF
    Fluorescence microscopy enables one to visualize subcellular structures of living tissue or cells in three dimensions. This is especially true for two-photon microscopy using near-infrared light which can image deeper into tissue. To characterize and analyze biological structures, nuclei segmentation is a prerequisite step. Due to the complexity and size of the image data sets, manual segmentation is prohibitive. This paper describes a fully 3D nuclei segmentation method using three dimensional convolutional neural networks. To train the network, synthetic volumes with corresponding labeled volumes are automatically generated. Our results from multiple data sets demonstrate that our method can successfully segment nuclei in 3D

    Three Dimensional Fluorescence Microscopy Image Synthesis and Segmentation

    Get PDF
    Advances in fluorescence microscopy enable acquisition of 3D image volumes with better image quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images and recent 3D segmentation using deep learning has achieved promising results. One issue is that deep learning techniques require a large set of groundtruth data which is impractical to annotate manually for large 3D microscopy volumes. This paper describes a 3D deep learning nuclei segmentation method using synthetic 3D volumes for training. A set of synthetic volumes and the corresponding groundtruth are generated using spatially constrained cycle-consistent adversarial networks. Segmentation results demonstrate that our proposed method is capable of segmenting nuclei successfully for various data sets

    Nucleus segmentation : towards automated solutions

    Get PDF
    Single nucleus segmentation is a frequent challenge of microscopy image processing, since it is the first step of many quantitative data analysis pipelines. The quality of tracking single cells, extracting features or classifying cellular phenotypes strongly depends on segmentation accuracy. Worldwide competitions have been held, aiming to improve segmentation, and recent years have definitely brought significant improvements: large annotated datasets are now freely available, several 2D segmentation strategies have been extended to 3D, and deep learning approaches have increased accuracy. However, even today, no generally accepted solution and benchmarking platform exist. We review the most recent single-cell segmentation tools, and provide an interactive method browser to select the most appropriate solution.Peer reviewe

    Nuclei counting in microscopy images with three dimensional generative adversarial networks

    Get PDF
    Microscopy image analysis can provide substantial information for clinical study and understanding of biological structures. Two-photon microscopy is a type of fluorescence microscopy that can image deep into tissue with near-infrared excitation light. We are interested in methods that can detect and characterize nuclei in 3D fluorescence microscopy image volumes. In general, several challenges exist for counting nuclei in 3D image volumes. These include “crowding” and touching of nuclei, overlapping of nuclei, and shape and size variances of the nuclei. In this paper, a 3D nuclei counter using two different generative adversarial networks (GAN) is proposed and evaluated. Synthetic data that resembles real microscopy image is generated with a GAN and used to train another 3D GAN that counts the number of nuclei. Our approach is evaluated with respect to the number of groundtruth nuclei and compared with common ways of counting used in the biological research. Fluorescence microscopy 3D image volumes of rat kidneys are used to test our 3D nuclei counter. The accuracy results of proposed nuclei counter are compared with the ImageJ’s 3D object counter (JACoP) and the 3D watershed. Both the counting accuracy and the object-based evaluation show that the proposed technique is successful for counting nuclei in 3D

    Three Dimensional Nuclei Segmentation and Classification of Fluorescence Microscopy Images

    Get PDF
    Segmentation and classification of cell nuclei in fluorescence 3D microscopy image volumes are fundamental steps for image analysis. However, accurate cell nuclei segmentation and detection in microscopy image volumes are hampered by poor image quality, crowding of nuclei, and large variation in nuclei size and shape. In this paper, we present an unsupervised volume to volume translation approach adapted from the Recycle-GAN using modified Hausdorff distance loss for synthetically generating nuclei with better shapes. A 3D CNN with a regularization term is used for nuclei segmentation and classification followed by nuclei boundary refinement. Experimental results demonstrate that the proposed method can successfully segment nuclei and identify individual nuclei

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Three Dimensional Blind Image Deconvolution for Fluorescence Microscopy using Generative Adversarial Networks

    Get PDF
    Due to image blurring image deconvolution is often used for studying biological structures in fluorescence microscopy. Fluorescence microscopy image volumes inherently suffer from intensity inhomogeneity, blur, and are corrupted by various types of noise which exacerbate image quality at deeper tissue depth. Therefore, quantitative analysis of fluorescence microscopy in deeper tissue still remains a challenge. This paper presents a three dimensional blind image deconvolution method for fluorescence microscopy using 3way spatially constrained cycle-consistent adversarial networks. The restored volumes of the proposed deconvolution method and other well-known deconvolution methods, denoising methods, and an inhomogeneity correction method are visually and numerically evaluated. Experimental results indicate that the proposed method can restore and improve the quality of blurred and noisy deep depth microscopy image visually and quantitatively

    Automated segmentation of tissue images for computerized IHC analysis

    Get PDF
    This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologie
    corecore