6,467 research outputs found

    Approaches to Quantifying EEG Features for Design Protocol Analysis

    Get PDF
    Recently, physiological signals such as eye-tracking and gesture analysis, galvanic skin response (GSR), electrocardiograms (ECG) and electroencephalograms (EEG) have been used by design researchers to extract significant information to describe the conceptual design process. We study a set of video-based design protocols recorded on subjects performing design tasks on a sketchpad while having their EEG monitored. The conceptual design process is rich with information on how designer’s do design. Many methods exist to analyze the conceptual design process, the most popular one being concurrent verbal protocols. A recurring problem in design protocol analysis is to segment and code protocol data into logical and semantic units. This is usually a manual step and little work has been done on fully automated segmentation techniques. Also, verbal protocols are known to fail in some circumstances such as when dealing with creativity, insight (e.g. Aha! experience, gestalt), concurrent, nonverbalizable (e.g. facial recognition) and nonconscious processes. We propose different approaches to study the conceptual design process using electroencephalograms (EEG). More specifically, we use spatio-temporal and frequency domain features. Our research is based on machine learning techniques used on EEG signals (functional microstate analysis), source localization (LORETA) and on a novel method of segmentation for design protocols based on EEG features. Using these techniques, we measure mental effort, fatigue and concentration in the conceptual design process, in addition to creativity and insight/nonverbalizable processing. We discuss the strengths and weaknesses of such approaches

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Early changes in alpha band power and DMN BOLD activity in Alzheimer's disease: a simultaneous resting state EEG-fMRI study

    Get PDF
    Simultaneous resting state functional magnetic resonance imaging (rsfMRI)-resting state electroencephalography (rsEEG) studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN) regions. Negative associations were found in occipital regions. In Alzheimer's disease (AD), rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC). We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI-EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8-12 Hz, 8-10 Hz, and 10-12 Hz) was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≥ 50 voxels). This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD signal in numerous regions, including DMN regions, are diminished in AD

    Development of neural responses to hearing their own name in infants at low and high risk for autism spectrum disorder

    Get PDF
    The own name is a salient stimulus, used by others to initiate social interaction. Typically developing infants orient towards the sound of their own name and exhibit enhanced event-related potentials (ERP) at 5 months. The lack of orientation to the own name is considered to be one of the earliest signs of autism spectrum disorder (ASD). In this study, we investigated ERPs to hearing the own name in infants at high and low risk for ASD, at 10 and 14 months. We hypothesized that low-risk infants would exhibit enhanced frontal ERP responses to their own name compared to an unfamiliar name, while high-risk infants were expected to show attenuation or absence of this difference in their ERP responses. In contrast to expectations, we did not find enhanced ERPs to own name in the low-risk group. However, the high-risk group exhibited attenuated frontal positive-going activity to their own name compared to an unfamiliar name and compared to the low-risk group, at the age of 14 months. These results suggest that infants at high risk for ASD start to process their own name differently shortly after one year of age, a period when frontal brain development is happening at a fast rate

    Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting

    Get PDF
    A recently proposed iterated alternating sequential (IAS) MEG inverse solver algorithm, based on the coupling of a hierarchical Bayesian model with computationally efficient Krylov subspace linear solver, has been shown to perform well for both superficial and deep brain sources. However, a systematic study of its ability to correctly identify active brain regions is still missing. We propose novel statistical protocols to quantify the performance of MEG inverse solvers, focusing in particular on how their accuracy and precision at identifying active brain regions. We use these protocols for a systematic study of the performance of the IAS MEG inverse solver, comparing it with three standard inversion methods, wMNE, dSPM, and sLORETA. To avoid the bias of anecdotal tests towards a particular algorithm, the proposed protocols are Monte Carlo sampling based, generating an ensemble of activity patches in each brain region identified in a given atlas. The performance in correctly identifying the active areas is measured by how much, on average, the reconstructed activity is concentrated in the brain region of the simulated active patch. The analysis is based on Bayes factors, interpreting the estimated current activity as data for testing the hypothesis that the active brain region is correctly identified, versus the hypothesis of any erroneous attribution. The methodology allows the presence of a single or several simultaneous activity regions, without assuming that the number of active regions is known. The testing protocols suggest that the IAS solver performs well with both with cortical and subcortical activity estimation
    corecore