124 research outputs found

    Image-based window detection: an overview

    Get PDF
    Automated segmentation of buildings’ façade and detection of its elements is of high relevance in various fields of research as it, e. g., reduces the effort of 3 D reconstructing existing buildings and even entire cities or may be used for navigation and localization tasks. In recent years, several approaches were made concerning this issue. These can be mainly classified by their input data which are either images or 3 D point clouds. This paper provides a survey of image-based approaches. Particularly, this paper focuses on window detection and therefore groups related papers into the three major detection strategies. We juxtapose grammar based methods, pattern recognition and machine learning and contrast them referring to their generality of application. As we found out machine learning approaches seem most promising for window detection on generic façades and thus we will pursue these in future work

    Learning Grammars for Architecture-Specific Facade Parsing

    Get PDF
    International audienceParsing facade images requires optimal handcrafted grammar for a given class of buildings. Such a handcrafted grammar is often designed manually by experts. In this paper, we present a novel framework to learn a compact grammar from a set of ground-truth images. To this end, parse trees of ground-truth annotated images are obtained running existing inference algorithms with a simple, very general grammar. From these parse trees, repeated subtrees are sought and merged together to share derivations and produce a grammar with fewer rules. Furthermore, unsupervised clustering is performed on these rules, so that, rules corresponding to the same complex pattern are grouped together leading to a rich compact grammar. Experimental validation and comparison with the state-of-the-art grammar-based methods on four diff erent datasets show that the learned grammar helps in much faster convergence while producing equal or more accurate parsing results compared to handcrafted grammars as well as grammars learned by other methods. Besides, we release a new dataset of facade images from Paris following the Art-deco style and demonstrate the general applicability and extreme potential of the proposed framework

    Holistic interpretation of visual data based on topology:semantic segmentation of architectural facades

    Get PDF
    The work presented in this dissertation is a step towards effectively incorporating contextual knowledge in the task of semantic segmentation. To date, the use of context has been confined to the genre of the scene with a few exceptions in the field. Research has been directed towards enhancing appearance descriptors. While this is unarguably important, recent studies show that computer vision has reached a near-human level of performance in relying on these descriptors when objects have stable distinctive surface properties and in proper imaging conditions. When these conditions are not met, humans exploit their knowledge about the intrinsic geometric layout of the scene to make local decisions. Computer vision lags behind when it comes to this asset. For this reason, we aim to bridge the gap by presenting algorithms for semantic segmentation of building facades making use of scene topological aspects. We provide a classification scheme to carry out segmentation and recognition simultaneously.The algorithm is able to solve a single optimization function and yield a semantic interpretation of facades, relying on the modeling power of probabilistic graphs and efficient discrete combinatorial optimization tools. We tackle the same problem of semantic facade segmentation with the neural network approach.We attain accuracy figures that are on-par with the state-of-the-art in a fully automated pipeline.Starting from pixelwise classifications obtained via Convolutional Neural Networks (CNN). These are then structurally validated through a cascade of Restricted Boltzmann Machines (RBM) and Multi-Layer Perceptron (MLP) that regenerates the most likely layout. In the domain of architectural modeling, there is geometric multi-model fitting. We introduce a novel guided sampling algorithm based on Minimum Spanning Trees (MST), which surpasses other propagation techniques in terms of robustness to noise. We make a number of additional contributions such as measure of model deviation which captures variations among fitted models

    ARCHITECTURE ESTIMATION FROM SPARSE IMAGES USING GRAMMATICAL SHAPE PRIORS FOR CULTURAL HERITAGE

    Get PDF
    The estimation and reconstruction of 3D architectural structures is of great in- terest in computer vision, as well as cultural heritage. This dissertation proposes a novel approach to solve the di??cult problem of estimating architectural structures from sparse images and e??ciently generating 3D models from estimation results for cultural heritage. This approach takes as input one plan drawing image and a few fac¸ade images, and provides as output the volumetric 3D models which represent the structures in the sparse images. Support of this research goal has motivated new investigations in underlying structure estimation problems including detecting structural feature points in 2D images, decomposing plan drawings into semantically meaningful shapes for medieval castles, estimating rectangular and Gothic fac¸ades using shape priors, and estimating complete 3D models for architectural structures using a novel volumetric shape grammar. Major outstanding challenges in each of these topic areas are addressed resulting in contributions to current state-of-the-art as it applied to these di??cult problems
    • …
    corecore