62 research outputs found

    Shadow detection in still road images using chrominance properties of shadows and spectral power distribution of the illumination

    Get PDF
    A well-known challenge in vision-based driver assistance systems is cast shadows on the road, which makes fundamental tasks such as road and lane detections difficult. In as much as shadow detection relies on shadow features, in this paper, we propose a set of new chrominance properties of shadows based on the skylight and sunlight contributions to the road surface chromaticity. Six constraints on shadow and non-shadowed regions are derived from these properties. The chrominance properties and the associated constraints are used as shadow features in an effective shadow detection method intended to be integrated on an onboard road detection system where the identification of cast shadows on the road is a determinant stage. Onboard systems deal with still outdoor images; thus, the approach focuses on distinguishing shadow boundaries from material changes by considering two illumination sources: sky and sun. A non-shadowed road region is illuminated by both skylight and sunlight, whereas a shadowed one is illuminated by skylight only; thus, their chromaticity varies. The shadow edge detection strategy consists of the identification of image edges separating shadowed and non-shadowed road regions. The classification is achieved by verifying whether the pixel chrominance values of regions on both sides of the image edges satisfy the six constraints. Experiments on real traffc scenes demonstrated the effectiveness of our shadow detection system in detecting shadow edges on the road and material-change edges, outperforming previous shadow detection methods based on physical features, and showing the high potential of the new chrominance properties

    Towards Probe-Less Augmented Reality:a Position Paper

    Get PDF

    The Hyper-log-chromaticity space for illuminant invariance

    Get PDF
    Variation in illumination conditions through a scene is a common issue for classification, segmentation and recognition applications. Traffic monitoring and driver assistance systems have difficulty with the changing illumination conditions at night, throughout the day, with multiple sources (especially at night) and in the presence of shadows. The majority of existing algorithms for color constancy or shadow detection rely on multiple frames for comparison or to build a background model. The proposed approach uses a novel color space inspired by the Log-Chromaticity space and modifies the bilateral filter to equalize illumination across objects using a single frame. Neighboring pixels of the same color, but of different brightness, are assumed to be of the same object/material. The utility of the algorithm is studied over day and night simulated scenes of varying complexity. The objective is not to provide a product for visual inspection but rather an alternate image with fewer illumination related issues for other algorithms to process. The usefulness of the filter is demonstrated by applying two simple classifiers and comparing the class statistics. The hyper-log-chromaticity image and the filtered image both improve the quality of the classification relative to the un-processed image

    Noise-limited scene-change detection in images

    Get PDF
    This thesis describes the theoretical, experimental, and practical aspects of a noise-limited method for scene-change detection in images. The research is divided into three sections: noise analysis and modelling, dual illumination scene-change modelling, and integration of noise into the scene-change model. The sources of noise within commercially available digital cameras are described, with a new model for image noise derived for charge-coupled device (CCD) cameras. The model is validated experimentally through the development of techniques that allow the individual noise components to be measured from the analysis of output images alone. A generic model for complementary metal-oxide-semiconductor (CMOS) cameras is also derived. Methods for the analysis of spatial (inter-pixel) and temporal (intra-pixel) noise are developed. These are used subsequently to investigate the effects of environmental temperature on camera noise. Based on the cameras tested, the results show that the CCD camera noise response to variation in environmental temperature is complex whereas the CMOS camera response simply increases monotonically. A new concept for scene-change detection is proposed based upon a dual illumination concept where both direct and ambient illumination sources are present in an environment, such as that which occurs in natural outdoor scenes with direct sunlight and ambient skylight. The transition of pixel colour from the combined direct and ambient illuminants to the ambient illuminant only is modelled. A method for shadow-free scene-change is then developed that predicts a pixel's colour when the area in the scene is subjected to ambient illumination only, allowing pixel change to be distinguished as either being due to a cast shadow or due to a genuine change in the scene. Experiments on images captured in controlled lighting demonstrate 91% of scene-change and 83% of cast shadows are correctly determined from analysis of pixel colour change alone. A statistical method for detecting shadow-free scene-change is developed. This is achieved by bounding the dual illumination model by the confidence interval associated with the pixel's noise. Three benefits arise from the integration of noise into the scene-change detection method: - The necessity for pre-filtering images for noise is removed; - All empirical thresholds are removed; and - Performance is improved. The noise-limited scene-change detection algorithm correctly classifies 93% of scene-change and 87% of cast shadows from pixel colour change alone. When simple post-analysis size-filtering is applied both these figures increase to 95%

    Shadow segmentation and tracking in real-world conditions

    Get PDF
    Visual information, in the form of images and video, comes from the interaction of light with objects. Illumination is a fundamental element of visual information. Detecting and interpreting illumination effects is part of our everyday life visual experience. Shading for instance allows us to perceive the three-dimensional nature of objects. Shadows are particularly salient cues for inferring depth information. However, we do not make any conscious or unconscious effort to avoid them as if they were an obstacle when we walk around. Moreover, when humans are asked to describe a picture, they generally omit the presence of illumination effects, such as shadows, shading, and highlights, to give a list of objects and their relative position in the scene. Processing visual information in a way that is close to what the human visual system does, thus being aware of illumination effects, represents a challenging task for computer vision systems. Illumination phenomena interfere in fact with fundamental tasks in image analysis and interpretation applications, such as object extraction and description. On the other hand, illumination conditions are an important element to be considered when creating new and richer visual content that combines objects from different sources, both natural and synthetic. When taken into account, illumination effects can play an important role in achieving realism. Among illumination effects, shadows are often integral part of natural scenes and one of the elements contributing to naturalness of synthetic scenes. In this thesis, the problem of extracting shadows from digital images is discussed. A new analysis method for the segmentation of cast shadows in still and moving images without the need of human supervision is proposed. The problem of separating moving cast shadows from moving objects in image sequences is particularly relevant for an always wider range of applications, ranging from video analysis to video coding, and from video manipulation to interactive environments. Therefore, particular attention has been dedicated to the segmentation of shadows in video. The validity of the proposed approach is however also demonstrated through its application to the detection of cast shadows in still color images. Shadows are a difficult phenomenon to model. Their appearance changes with changes in the appearance of the surface they are cast upon. It is therefore important to exploit multiple constraints derived from the analysis of the spectral, geometric and temporal properties of shadows to develop effective techniques for their extraction. The proposed method combines an analysis of color information and of photometric invariant features to a spatio-temporal verification process. With regards to the use of color information for shadow analysis, a complete picture of the existing solutions is provided, which points out the fundamental assumptions, the adopted color models and the link with research problems such as computational color constancy and color invariance. The proposed spatial verification does not make any assumption about scene geometry nor about object shape. The temporal analysis is based on a novel shadow tracking technique. On the basis of the tracking results, a temporal reliability estimation of shadows is proposed which allows to discard shadows which do not present time coherence. The proposed approach is general and can be applied to a wide class of applications and input data. The proposed cast shadow segmentation method has been evaluated on a number of different video data representing indoor and outdoor real-world environments. The obtained results have confirmed the validity of the approach, in particular its ability to deal with different types of content and its robustness to different physically important independent variables, and have demonstrated the improvement with respect to the state of the art. Examples of application of the proposed shadow segmentation tool to the enhancement of video object segmentation, tracking and description operations, and to video composition, have demonstrated the advantages of a shadow-aware video processing

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer Gegenstände ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zählen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berücksichtigen gilt, von optischen Materialeigenschaften über makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der Einführung in das Thema, ein weiter Überblick über ähnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von Materialoberflächen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhängig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene Repräsentation von Reflektionseigenschaften. Sie enthält Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der Oberfläche hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und für Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. Während die PCA die entscheidenen visuellen Aspekte der BTF erhält, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erläutert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstützen, muss die makroskopische Selbstabschattung integriert werden. Für die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und für statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzuführen. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. Zusätzlich ist die Verwendung von veränderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren für Präsentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der für die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus für eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann Sprünge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten über bandbreitenlimitierte Kanäle wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema für Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich ähnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruktionsqualität nach der Dekomprimierung

    A practical vision system for the detection of moving objects

    Get PDF
    The main goal of this thesis is to review and offer robust and efficient algorithms for the detection (or the segmentation) of foreground objects in indoor and outdoor scenes using colour image sequences captured by a stationary camera. For this purpose, the block diagram of a simple vision system is offered in Chapter 2. First this block diagram gives the idea of a precise order of blocks and their tasks, which should be performed to detect moving foreground objects. Second, a check mark () on the top right corner of a block indicates that this thesis contains a review of the most recent algorithms and/or some relevant research about it. In many computer vision applications, segmenting and extraction of moving objects in video sequences is an essential task. Background subtraction has been widely used for this purpose as the first step. In this work, a review of the efficiency of a number of important background subtraction and modelling algorithms, along with their major features, are presented. In addition, two background approaches are offered. The first approach is a Pixel-based technique whereas the second one works at object level. For each approach, three algorithms are presented. They are called Selective Update Using Non-Foreground Pixels of the Input Image , Selective Update Using Temporal Averaging and Selective Update Using Temporal Median , respectively in this thesis. The first approach has some deficiencies, which makes it incapable to produce a correct dynamic background. Three methods of the second approach use an invariant colour filter and a suitable motion tracking technique, which selectively exclude foreground objects (or blobs) from the background frames. The difference between the three algorithms of the second approach is in updating process of the background pixels. It is shown that the Selective Update Using Temporal Median method produces the correct background image for each input frame. Representing foreground regions using their boundaries is also an important task. Thus, an appropriate RLE contour tracing algorithm has been implemented for this purpose. However, after the thresholding process, the boundaries of foreground regions often have jagged appearances. Thus, foreground regions may not correctly be recognised reliably due to their corrupted boundaries. A very efficient boundary smoothing method based on the RLE data is proposed in Chapter 7. It just smoothes the external and internal boundaries of foreground objects and does not distort the silhouettes of foreground objects. As a result, it is very fast and does not blur the image. Finally, the goal of this thesis has been presenting simple, practical and efficient algorithms with little constraints which can run in real time
    corecore