537 research outputs found

    Automated Distinct Bone Segmentation from Computed Tomography Images using Deep Learning

    Get PDF
    Large-scale CT scans are frequently performed for forensic and diagnostic purposes, to plan and direct surgical procedures, and to track the development of bone-related diseases. This often involves radiologists who have to annotate bones manually or in a semi-automatic way, which is a time consuming task. Their annotation workload can be reduced by automated segmentation and detection of individual bones. This automation of distinct bone segmentation not only has the potential to accelerate current workflows but also opens up new possibilities for processing and presenting medical data for planning, navigation, and education. In this thesis, we explored the use of deep learning for automating the segmentation of all individual bones within an upper-body CT scan. To do so, we had to find a network architec- ture that provides a good trade-off between the problem’s high computational demands and the results’ accuracy. After finding a baseline method and having enlarged the dataset, we set out to eliminate the most prevalent types of error. To do so, we introduced an novel method called binary-prediction-enhanced multi-class (BEM) inference, separating the task into two: Distin- guishing bone from non-bone is conducted separately from identifying the individual bones. Both predictions are then merged, which leads to superior results. Another type of error is tack- led by our developed architecture, the Sneaky-Net, which receives additional inputs with larger fields of view but at a smaller resolution. We can thus sneak more extensive areas of the input into the network while keeping the growth of additional pixels in check. Overall, we present a deep-learning-based method that reliably segments most of the over one hundred distinct bones present in upper-body CT scans in an end-to-end trained matter quickly enough to be used in interactive software. Our algorithm has been included in our groups virtual reality medical image visualisation software SpectoVR with the plan to be used as one of the puzzle piece in surgical planning and navigation, as well as in the education of future doctors

    Image Diversification via Deep Learning based Generative Models

    Get PDF
    Machine learning driven pattern recognition from imagery such as object detection has been prevalenting among society due to the high demand for autonomy and the recent remarkable advances in such technology. The machine learning technologies acquire the abstraction of the existing data and enable inference of the pattern of the future inputs. However, such technologies require a sheer amount of images as a training dataset which well covers the distribution of the future inputs in order to predict the proper patterns whereas it is impracticable to prepare enough variety of images in many cases. To address this problem, this thesis pursues to discover the method to diversify image datasets for fully enabling the capability of machine learning driven applications. Focusing on the plausible image synthesis ability of generative models, we investigate a number of approaches to expand the variety of the output images using image-to-image translation, mixup and diffusion models along with the technique to enable a computation and training dataset efficient diffusion approach. First, we propose the combined use of unpaired image-to-image translation and mixup for data augmentation on limited non-visible imagery. Second, we propose diffusion image-to-image translation that generates greater quality images than other previous adversarial training based translation methods. Third, we propose a patch-wise and discrete conditional training of diffusion method enabling the reduction of the computation and the robustness on small training datasets. Subsequently, we discuss a remaining open challenge about evaluation and the direction of future work. Lastly, we make an overall conclusion after stating social impact of this research field

    Current Challenges in the Application of Algorithms in Multi-institutional Clinical Settings

    Get PDF
    The Coronavirus disease pandemic has highlighted the importance of artificial intelligence in multi-institutional clinical settings. Particularly in situations where the healthcare system is overloaded, and a lot of data is generated, artificial intelligence has great potential to provide automated solutions and to unlock the untapped potential of acquired data. This includes the areas of care, logistics, and diagnosis. For example, automated decision support applications could tremendously help physicians in their daily clinical routine. Especially in radiology and oncology, the exponential growth of imaging data, triggered by a rising number of patients, leads to a permanent overload of the healthcare system, making the use of artificial intelligence inevitable. However, the efficient and advantageous application of artificial intelligence in multi-institutional clinical settings faces several challenges, such as accountability and regulation hurdles, implementation challenges, and fairness considerations. This work focuses on the implementation challenges, which include the following questions: How to ensure well-curated and standardized data, how do algorithms from other domains perform on multi-institutional medical datasets, and how to train more robust and generalizable models? Also, questions of how to interpret results and whether there exist correlations between the performance of the models and the characteristics of the underlying data are part of the work. Therefore, besides presenting a technical solution for manual data annotation and tagging for medical images, a real-world federated learning implementation for image segmentation is introduced. Experiments on a multi-institutional prostate magnetic resonance imaging dataset showcase that models trained by federated learning can achieve similar performance to training on pooled data. Furthermore, Natural Language Processing algorithms with the tasks of semantic textual similarity, text classification, and text summarization are applied to multi-institutional, structured and free-text, oncology reports. The results show that performance gains are achieved by customizing state-of-the-art algorithms to the peculiarities of the medical datasets, such as the occurrence of medications, numbers, or dates. In addition, performance influences are observed depending on the characteristics of the data, such as lexical complexity. The generated results, human baselines, and retrospective human evaluations demonstrate that artificial intelligence algorithms have great potential for use in clinical settings. However, due to the difficulty of processing domain-specific data, there still exists a performance gap between the algorithms and the medical experts. In the future, it is therefore essential to improve the interoperability and standardization of data, as well as to continue working on algorithms to perform well on medical, possibly, domain-shifted data from multiple clinical centers

    Workshop Proceedings of the 12th edition of the KONVENS conference

    Get PDF
    The 2014 issue of KONVENS is even more a forum for exchange: its main topic is the interaction between Computational Linguistics and Information Science, and the synergies such interaction, cooperation and integrated views can produce. This topic at the crossroads of different research traditions which deal with natural language as a container of knowledge, and with methods to extract and manage knowledge that is linguistically represented is close to the heart of many researchers at the Institut für Informationswissenschaft und Sprachtechnologie of Universität Hildesheim: it has long been one of the institute’s research topics, and it has received even more attention over the last few years

    Discovering structure without labels

    Get PDF
    The scarcity of labels combined with an abundance of data makes unsupervised learning more attractive than ever. Without annotations, inductive biases must guide the identification of the most salient structure in the data. This thesis contributes to two aspects of unsupervised learning: clustering and dimensionality reduction. The thesis falls into two parts. In the first part, we introduce Mod Shift, a clustering method for point data that uses a distance-based notion of attraction and repulsion to determine the number of clusters and the assignment of points to clusters. It iteratively moves points towards crisp clusters like Mean Shift but also has close ties to the Multicut problem via its loss function. As a result, it connects signed graph partitioning to clustering in Euclidean space. The second part treats dimensionality reduction and, in particular, the prominent neighbor embedding methods UMAP and t-SNE. We analyze the details of UMAP's implementation and find its actual loss function. It differs drastically from the one usually stated. This discrepancy allows us to explain some typical artifacts in UMAP plots, such as the dataset size-dependent tendency to produce overly crisp substructures. Contrary to existing belief, we find that UMAP's high-dimensional similarities are not critical to its success. Based on UMAP's actual loss, we describe its precise connection to the other state-of-the-art visualization method, t-SNE. The key insight is a new, exact relation between the contrastive loss functions negative sampling, employed by UMAP, and noise-contrastive estimation, which has been used to approximate t-SNE. As a result, we explain that UMAP embeddings appear more compact than t-SNE plots due to increased attraction between neighbors. Varying the attraction strength further, we obtain a spectrum of neighbor embedding methods, encompassing both UMAP- and t-SNE-like versions as special cases. Moving from more attraction to more repulsion shifts the focus of the embedding from continuous, global to more discrete and local structure of the data. Finally, we emphasize the link between contrastive neighbor embeddings and self-supervised contrastive learning. We show that different flavors of contrastive losses can work for both of them with few noise samples

    Machine Learning Algorithm for the Scansion of Old Saxon Poetry

    Get PDF
    Several scholars designed tools to perform the automatic scansion of poetry in many languages, but none of these tools deal with Old Saxon or Old English. This project aims to be a first attempt to create a tool for these languages. We implemented a Bidirectional Long Short-Term Memory (BiLSTM) model to perform the automatic scansion of Old Saxon and Old English poems. Since this model uses supervised learning, we manually annotated the Heliand manuscript, and we used the resulting corpus as labeled dataset to train the model. The evaluation of the performance of the algorithm reached a 97% for the accuracy and a 99% of weighted average for precision, recall and F1 Score. In addition, we tested the model with some verses from the Old Saxon Genesis and some from The Battle of Brunanburh, and we observed that the model predicted almost all Old Saxon metrical patterns correctly misclassified the majority of the Old English input verses

    Beyond Quantity: Research with Subsymbolic AI

    Get PDF
    How do artificial neural networks and other forms of artificial intelligence interfere with methods and practices in the sciences? Which interdisciplinary epistemological challenges arise when we think about the use of AI beyond its dependency on big data? Not only the natural sciences, but also the social sciences and the humanities seem to be increasingly affected by current approaches of subsymbolic AI, which master problems of quality (fuzziness, uncertainty) in a hitherto unknown way. But what are the conditions, implications, and effects of these (potential) epistemic transformations and how must research on AI be configured to address them adequately
    • …
    corecore