3,865 research outputs found

    A novel Bayesian approach to adaptive mean shift segmentation of brain images

    Get PDF
    We present a novel adaptive mean shift (AMS) algorithm for the segmentation of tissues in magnetic resonance (MR) brain images. In particular we introduce a novel Bayesian approach for the estimation of the adaptive kernel bandwidth and investigate its impact on segmentation accuracy. We studied the three class problem where the brain tissues are segmented into white matter, gray matter and cerebrospinal fluid. The segmentation experiments were performed on both multi-modal simulated and real patient T1-weighted MR volumes with different noise characteristics and spatial inhomogeneities. The performance of the algorithm was evaluated relative to several competing methods using real and synthetic data. Our results demonstrate the efficacy of the proposed algorithm and that it can outperform competing methods, especially when the noise and spatial intensity inhomogeneities are high

    Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images

    Get PDF
    This research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image segmentation has proven difficult, primarily due to scanning artifacts such as interscan and intrascan intensity inhomogeneities. The method developed and presented here uses a PCNN to both filter and segment MR brain images. The technique begins by preprocessing images with a PCNN filter to reduce scanning artifacts. Images are then contrast enhanced via histogram equalization. Finally, a PCNN is used to segment the images to arrive at the final result. Modifications to the original PCNN model are made that drastically improve performance while greatly reducing memory requirements. These modifications make it possible to extend the method to filter and segment three dimensionally. Volumes represented as series of images are segmented using this new method. This new three dimensional segmentation technique can be used to obtain a better segmentation of a single image or of an entire volume. Results indicate that the PCNN shows promise as an image analysis tool

    Unsupervised Multi Class Segmentation of 3D Images with Intensity Inhomogeneities

    Full text link
    Intensity inhomogeneities in images constitute a considerable challenge in image segmentation. In this paper we propose a novel biconvex variational model to tackle this task. We combine a total variation approach for multi class segmentation with a multiplicative model to handle the inhomogeneities. Our method assumes that the image intensity is the product of a smoothly varying part and a component which resembles important image structures such as edges. Therefore, we penalize in addition to the total variation of the label assignment matrix a quadratic difference term to cope with the smoothly varying factor. A critical point of our biconvex functional is computed by a modified proximal alternating linearized minimization method (PALM). We show that the assumptions for the convergence of the algorithm are fulfilled by our model. Various numerical examples demonstrate the very good performance of our method. Particular attention is paid to the segmentation of 3D FIB tomographical images which was indeed the motivation of our work

    2D-Sigmoid Enhancement Prior to Segment MRI Glioma Tumour

    Get PDF
    Tumour identification has always been a topic that interested researchers around the world. The most challenging phase in tumour identification based on brain MR image is the segmentation of the tumour contour which may contain many unwanted details. Intensity inhomogeneities often occur in real world images and may cause the difficulties in image segmentation. InĀ  order to overcome the difficulties caused by intensity Ā inhomogeneity,Ā  the Ā study presented Ā pre-processing prior to a region based active contour model with modification of Region Scalable Fitting (MRF) method for image segmentation. Region based active contour model that draw upon intensity information inĀ  local regions. Ā The Ā pre-processingĀ  is Ā a Ā kindĀ  of imageĀ  enhancement which appliesĀ  the Ā 2D-sigmoid function at tumour boundary. Ā 2D-sigmoid function enhances the contrast in the brain MRI image for pre-processing steps.Ā Ā  Enhanced pixel value, F(x, y), is the ā€˜Sā€™ shape function of intensity I (x, y) of the image at the point (x, y), width of the gradient magnitude around brain image (Ī±) and gradient magnitude around brain image (Ī²). Experimental results show desirable of MRF method in terms of computation efficiency

    Intensity Segmentation of the Human Brain with Tissue dependent Homogenization

    Get PDF
    High-precision segmentation of the human cerebral cortex based on T1-weighted MRI is still a challenging task. When opting to use an intensity based approach, careful data processing is mandatory to overcome inaccuracies. They are caused by noise, partial volume effects and systematic signal intensity variations imposed by limited homogeneity of the acquisition hardware. We propose an intensity segmentation which is free from any shape prior. It uses for the first time alternatively grey (GM) or white matter (WM) based homogenization. This new tissue dependency was introduced as the analysis of 60 high resolution MRI datasets revealed appreciable differences in the axial bias field corrections, depending if they are based on GM or WM. Homogenization starts with axial bias correction, a spatially irregular distortion correction follows and finally a noise reduction is applied. The construction of the axial bias correction is based on partitions of a depth histogram. The irregular bias is modelled by Moody Darken radial basis functions. Noise is eliminated by nonlinear edge preserving and homogenizing filters. A critical point is the estimation of the training set for the irregular bias correction in the GM approach. Because of intensity edges between CSF (cerebro spinal fluid surrounding the brain and within the ventricles), GM and WM this estimate shows an acceptable stability. By this supervised approach a high flexibility and precision for the segmentation of normal and pathologic brains is gained. The precision of this approach is shown using the Montreal brain phantom. Real data applications exemplify the advantage of the GM based approach, compared to the usual WM homogenization, allowing improved cortex segmentation
    • ā€¦
    corecore