148 research outputs found

    Kidney segmentation in 4-dimensional dynamic contrast- enhanced MR images : A physiological approach

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Nuclei & Glands Instance Segmentation in Histology Images: A Narrative Review

    Full text link
    Instance segmentation of nuclei and glands in the histology images is an important step in computational pathology workflow for cancer diagnosis, treatment planning and survival analysis. With the advent of modern hardware, the recent availability of large-scale quality public datasets and the community organized grand challenges have seen a surge in automated methods focusing on domain specific challenges, which is pivotal for technology advancements and clinical translation. In this survey, 126 papers illustrating the AI based methods for nuclei and glands instance segmentation published in the last five years (2017-2022) are deeply analyzed, the limitations of current approaches and the open challenges are discussed. Moreover, the potential future research direction is presented and the contribution of state-of-the-art methods is summarized. Further, a generalized summary of publicly available datasets and a detailed insights on the grand challenges illustrating the top performing methods specific to each challenge is also provided. Besides, we intended to give the reader current state of existing research and pointers to the future directions in developing methods that can be used in clinical practice enabling improved diagnosis, grading, prognosis, and treatment planning of cancer. To the best of our knowledge, no previous work has reviewed the instance segmentation in histology images focusing towards this direction.Comment: 60 pages, 14 figure

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field involving a variety of disciplines, e.g., electronics, computer science, physics, mathematics, physiology, and medicine. Several imaging techniques have been developed, providing many approaches to the study of the human body. Biomedical image processing is finding an increasing number of important applications in, for example, the study of the internal structure or function of an organ and the diagnosis or treatment of a disease. If associated with classification methods, it can support the development of computer-aided diagnosis (CAD) systems, which could help medical doctors in refining their clinical picture

    Retrospective registration of tomographic brain images

    Get PDF
    In modern clinical practice, the clinician can make use of a vast array of specialized imaging techniques supporting diagnosis and treatment. For various reasons, the same anatomy of one patient is sometimes imaged more than once, either using the same imaging apparatus (monomodal acquisition ), or different ones (multimodal acquisition). To make simultaneous use of the acquired images, it is often necessary to bring these images in registration, i.e., to align their anatomical coordinate systems. The problem of medical image registration as concerns human brain images is addressed in this thesis. The specific chapters include a survey of recent literature, CT/MR registration using mathematical image features (edges and ridges), monomodal SPECT registration, and CT/MR/SPECT/PET registration using image features extracted by the use of mathematical morphology

    Task-based Optimization of Administered Activity for Pediatric Renal SPECT Imaging

    Get PDF
    Like any real-world problem, the design of an imaging system always requires tradeoffs. For medical imaging modalities using ionization radiation, a major tradeoff is between diagnostic image quality (IQ) and risk to the patient from absorbed dose (AD). In nuclear medicine, reducing the AD requires reducing the administered activity (AA). Lower AA to the patient can reduce risk and adverse effects, but can also result in reduced diagnostic image quality. Thus, ultimately, it is desirable to use the lowest AA that gives sufficient image quality for accurate clinical diagnosis. In this dissertation, we proposed and developed tools for a general framework for optimizing RD with task-based assessment of IQ. Here, IQ is defined as an objective measure of the user performing the diagnostic task that the images were acquired to answer. To investigate IQ as a function of renal defect detectability, we have developed a projection image database modeling imaging of 99mTc-DMSA, a renal function agent. The database uses a highly-realistic population of pediatric phantoms with anatomical and body morphological variations. Using the developed projection image database, we have explored patient factors that affect IQ and are currently in the process of determining relationships between IQ and AA in terms of these found factors. Our data have shown that factors that are more local to the target organ may be more robust than weight for estimating the AA needed to provide a constant IQ across a population of patients. In the case of renal imaging, we have discovered that girth is more robust than weight (currently used in clinical practice) in predicting AA needed to provide a desired IQ. In addition to exploring the patient factors, we also did some work on improving the task simulating capability for anthropomorphic model observer. We proposed a deep learning-based anthropomorphic model observer to fully and efficiently (in terms of both training data and computational cost) model the clinical 3D detection task using multi-slice, multi-orientation image sets. The proposed model observer is important and could be readily adapted to model human observer performance on detection tasks for other imaging modalities such as PET, CT or MRI
    • …
    corecore