5,277 research outputs found

    Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    Get PDF
    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis

    Statistical lossless compression of space imagery and general data in a reconfigurable architecture

    Get PDF

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Compositional Approximate Markov Chain Aggregation for PEPA Models

    Get PDF

    Context-Based Scalable Coding and Representation of High Resolution Art Pictures for Remote Data Access

    Get PDF
    International audienceEROS is the largest database in the world of high resolution art pictures. The TSAR project is designed to open it in a secure, efficient and user-friendly way that involves cryptography and watermarking as well as compression and region-level representation abilities. This paper more particularly addresses the two last points. The LAR codec is first presented as a suitable solution for picture encoding with compression ranging from highly lossy to lossless. Then, we detail the concept of self-extracting region representation, which consists of performing a segmentation process at both the coder and decoder from a highly compressed image, and later locally enhancing the image in a region of interest. The overall scheme provides an efficient, consistent solution for advanced data browsing
    corecore