1,749 research outputs found

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Semi-Automated Reconstruction of Neural Processes from Large Numbers of Fluorescence Images

    Get PDF
    We introduce a method for large scale reconstruction of complex bundles of neural processes from fluorescent image stacks. We imaged yellow fluorescent protein labeled axons that innervated a whole muscle, as well as dendrites in cerebral cortex, in transgenic mice, at the diffraction limit with a confocal microscope. Each image stack was digitally re-sampled along an orientation such that the majority of axons appeared in cross-section. A region growing algorithm was implemented in the open-source Reconstruct software and applied to the semi-automatic tracing of individual axons in three dimensions. The progression of region growing is constrained by user-specified criteria based on pixel values and object sizes, and the user has full control over the segmentation process. A full montage of reconstructed axons was assembled from the ∼200 individually reconstructed stacks. Average reconstruction speed is ∼0.5 mm per hour. We found an error rate in the automatic tracing mode of ∼1 error per 250 um of axonal length. We demonstrated the capacity of the program by reconstructing the connectome of motor axons in a small mouse muscle

    A Smart Region-Growing Algorithm for Single-Neuron Segmentation From Confocal and 2-Photon Datasets

    Get PDF
    Accurately digitizing the brain at the micro-scale is crucial for investigating brain structure-function relationships and documenting morphological alterations due to neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for the segmentation of single neurons in their intricate 3D arrangement within the brain. Its Region Growing procedure is based on a homogeneity predicate determined by describing the pixel intensity statistics of confocal acquisitions with a mixture model, enabling an accurate reconstruction of complex 3D cellular structures from high-resolution images of neural tissue. The algorithm’s outcome is a 3D matrix of logical values identifying the voxels belonging to the segmented structure, thus providing additional useful volumetric information on neurons. To highlight the algorithm’s full potential, we compared its performance in terms of accuracy, reproducibility, precision and robustness of 3D neuron reconstructions based on microscopic data from different brain locations and imaging protocols against both manual and state-of-the-art reconstruction tools

    Modelling Neuron Morphology: Automated Reconstruction from Microscopy Images

    Get PDF
    Understanding how the brain works is, beyond a shadow of doubt, one of the greatest challenges for modern science. Achieving a deep knowledge about the structure, function and development of the nervous system at the molecular, cellular and network levels is crucial in this attempt, as processes at all these scales are intrinsically linked with higher-order cognitive functions. The research in the various areas of neuroscience deals with advanced imaging techniques, collecting an increasing amounts of heterogeneous and complex data at different scales. Then, computational tools and neuroinformatics solutions are required in order to integrate and analyze the massive quantity of acquired information. Within this context, the development of automaticmethods and tools for the study of neuronal anatomy has a central role. The morphological properties of the soma and of the axonal and dendritic arborizations constitute a key discriminant for the neuronal phenotype and play a determinant role in network connectivity. A quantitative analysis allows the study of possible factors influencing neuronal development, the neuropathological abnormalities related to specific syndromes, the relationships between neuronal shape and function, the signal transmission and the network connectivity. Therefore, three-dimensional digital reconstructions of soma, axons and dendrites are indispensable for exploring neural networks. This thesis proposes a novel and completely automatic pipeline for neuron reconstruction with operations ranging from the detection and segmentation of the soma to the dendritic arborization tracing. The pipeline can deal with different datasets and acquisitions both at the network and at the single scale level without any user interventions or manual adjustment. We developed an ad hoc approach for the localization and segmentation of neuron bodies. Then, various methods and research lines have been investigated for the reconstruction of the whole dendritic arborization of each neuron, which is solved both in 2D and in 3D images

    Dense 4D nanoscale reconstruction of living brain tissue

    Get PDF
    Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure–function relationships of the brain’s complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue

    Whole-brain vasculature reconstruction at the single capillary level

    Get PDF
    The distinct organization of the brain’s vascular network ensures that it is adequately supplied with oxygen and nutrients. However, despite this fundamental role, a detailed reconstruction of the brain-wide vasculature at the capillary level remains elusive, due to insufficient image quality using the best available techniques. Here, we demonstrate a novel approach that improves vascular demarcation by combining CLARITY with a vascular staining approach that can fill the entire blood vessel lumen and imaging with light-sheet fluorescence microscopy. This method significantly improves image contrast, particularly in depth, thereby allowing reliable application of automatic segmentation algorithms, which play an increasingly important role in high-throughput imaging of the terabyte-sized datasets now routinely produced. Furthermore, our novel method is compatible with endogenous fluorescence, thus allowing simultaneous investigations of vasculature and genetically targeted neurons. We believe our new method will be valuable for future brain-wide investigations of the capillary network

    Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Get PDF
    Background: Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC) as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results: We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions: Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail

    Modelo de arborización dendrítica basado en reconstrucciones de motoneuronas frénicas en ratas adultas

    Get PDF
    El área superficial de las dendritas en motoneuronas frénicas (PhrMNs) ha sido estimada anteriormente mediante técnicas estereológicas basadas en suposiciones geométricas, y medida en tres dimensiones (3D) utilizando microscopía confocal. Dado que el 97% del área receptora de una motoneurona corresponde a sus dendritas, la ramificación y extensión dendrítica son fisiológicamente importantes para determinar la salida de sus campos receptivos. Sin embargo, limitaciones inherentes a las estimaciones basadas en morfología neuronal y la tinción incompleta de los árboles dendríticos mediante técnicas retrógradas han dificultado los estudios sistemáticos de la morfología dendrítica en PhrMNs. En este estudio, se utilizó una nueva técnica que mejora la tinción dendrítica de las PhrMNs en preparaciones fijadas ligeramente. La reconstrucción dendrítica en 3D se logró con gran precisión utilizando microscopía confocal en PhrMNs de ratas adultas. Luego de una etapa de pre-procesamiento, la segmentación de los árboles dendríticos se realizó semi-automáticamente en 3D y usando mediciones directas del área superficial, se derivó un modelo cuadrático para estimar dicha área partiendo del diámetro de la dendrita primaria (r2 = 0.932; p<0.0001). Este método podría mejorar la evaluación de la plasticidad neuronal en respuesta a trauma u otras enfermedades permitiendo la estimación de la arborización dendrítica en PhrMNs, ya que el diámetro de la dendrita primaria puede obtenerse confiablemente de numerosas técnicas de tinción retrógrada.Stereological techniques that rely on morphological assumptions and direct three-dimensional (3D) confocal measurements have been previously used to estimate the dendritic surface areas of phrenic motoneurons (PhrMNs). Given that 97% of a motoneuron’s receptive area is provided by dendrites, dendritic branching and overall extension are physiologically important in determining the output of their synaptic receptive fields. However, limitations intrinsic to shape-based estimations and incomplete labeling of dendritic trees by retrograde techniques have hindered systematic approaches to examine dendritic morphology of PhrMNs. In this study, a novel method that improves dendritic filling of PhrMNs in lightly-fixed samples was used. Confocal microscopy allowed accurate 3D reconstruction of dendritic arbors from adult rat PhrMNs. Following pre-processing, segmentation was semi-automatically performed in 3D, and direct measurements of dendritic surface area were obtained. A quadratic model for estimating dendritic tree surface area based on measurements of primary dendrite diameter was derived (r2 = 0.932; p<0.0001). This method may enhance interpretation of motoneuron plasticity in response to injury or disease by permitting estimations of dendritic arborization of PhrMNs since measurements of primary dendrite diameter can be reliably obtained from a number of retrograde labeling techniques

    Automated tracing of myelinated axons and detection of the nodes of Ranvier in serial images of peripheral nerves

    Get PDF
    The development of realistic neuroanatomical models of peripheral nerves for simulation purposes requires the reconstruction of the morphology of the myelinated fibres in the nerve, including their nodes of Ranvier. Currently, this information has to be extracted by semimanual procedures, which severely limit the scalability of the experiments. In this contribution, we propose a supervised machine learning approach for the detailed reconstruction of the geometry of fibres inside a peripheral nerve based on its high-resolution serial section images. Learning from sparse expert annotations, the algorithm traces myelinated axons, even across the nodes of Ranvier. The latter are detected automatically. The approach is based on classifying the myelinated membranes in a supervised fashion, closing the membrane gaps by solving an assignment problem, and classifying the closed gaps for the nodes of Ranvier detection. The algorithm has been validated on two very different datasets: (i) rat vagus nerve subvolume, SBFSEM microscope, 200 × 200 × 200 nm resolution, (ii) rat sensory branch subvolume, confocal microscope, 384 × 384 × 800 nm resolution. For the first dataset, the algorithm correctly reconstructed 88% of the axons (241 out of 273) and achieved 92% accuracy on the task of Ranvier node detection. For the second dataset, the gap closing algorithm correctly closed 96.2% of the gaps, and 55% of axons were reconstructed correctly through the whole volume. On both datasets, training the algorithm on a small data subset and applying it to the full dataset takes a fraction of the time required by the currently used semiautomated protocols. Our software, raw data and ground truth annotations are available at http://hci.iwr.uni-heidelberg.de/Benchmarks/. The development version of the code can be found at https://github.com/RWalecki/ATMA

    Generative probabilistic models of neuron morphology

    Get PDF
    Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (page 40).Thanks to automation in ultrathin sectioning and confocal and electron microscopy, it is now possible to image large populations of neurons at single-cell resolution. This imaging capability promises to create a new field of neural circuit microanatomy. Three goals of such a field would be to trace multi-cell neural networks, to classify neurons into morphological cell types, and to compare patterns and statistics of connectivity in large networks to meaningful null models. However, those goals raise significant computational challenges. In particular, since neural morphology spans six orders of magnitude in length (roughly 1 nm-1 mm), a spatial hierarchy of representations is needed to capture micron-scale morphological features in nanometer resolution images. For this thesis, I have built and characterized a system that learns such a representation as a Multivariate Hidden Markov Model over skeletonized neurons. I have developed and implemented a maximum likelihood method for learning an HMM over a directed, unrooted tree structure of arbitrary degree. In addition, I have developed and implemented a set of object-oriented data structures to support this HMM, and to produce a directed tree given a division of the leaf nodes into inputs and outputs. Furthermore, I have developed a set of features on which to train the HMM based only on information in the skeletonized neuron, and I have tested this system on a dataset consisting of confocal microscope images of 14 fluorescence-labeled mouse retinal ganglion cells. Additionally, I have developed a system to simulate neurons of varying difficulty for the HMM, and analyzed its performance on those neurons. Finally, I have explored whether the HMMs this system learns could successfully detect errors in simulated and, eventually, neural datasets.by Stephen Rothrock Serene.M. Eng
    corecore