1,644 research outputs found

    Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading

    Get PDF
    Existing computational pathology approaches did not allow, yet, the emergence of effective/efficient computer-aided tools used as a second opinion for pathologists in the daily practice. Focusing on the case of computer-based qualification for breast cancer diagnosis, the present article proposes two deep learning architectures to efficiently and effectively detect and classify mitosis in a histopathological tissue sample. The first method consisted of two parts, entailing a preprocessing of the digital histological image and a free-handcrafted-feature Convolutional Neural Network (CNN) used for binary classification. Results show that the methodology proposed can achieve 95% accuracy in testing with an F1-score of 94.35%, which is higher than the results from the literature using classical image processing techniques and also higher than the approaches using handcrafted features combined with CNNs. The second approach was an end-to-end methodology using semantic segmentation. Results showed that this algorithm can achieve an accuracy higher than 95% in testing and an average Dice index of 0.6 which is higher than the results from the literature using CNNs (0.9 F1-score). Additionally, due to the semantic properties of the deep learning approach, an end-to-end deep learning framework is viable to perform both tasks: detection and classification of mitosis. The results showed the potential of deep learning in the analysis of Whole Slide Images (WSI) and its integration to computer-aided systems. The extension of this work to whole slide images is also addressed in the last two chapters; as well as, some computational key points that are useful when constructing a computer-aided-system inspired by the described technology.Trabajo de investigació

    Semi-automated learning strategies for large-scale segmentation of histology and other big bioimaging stacks and volumes

    Get PDF
    Labelled high-resolution datasets are becoming increasingly common and necessary in different areas of biomedical imaging. Examples include: serial histology and ex-vivo MRI for atlas building, OCT for studying the human brain, and micro X-ray for tissue engineering. Labelling such datasets, typically, requires manual delineation of a very detailed set of regions of interest on a large number of sections or slices. This process is tedious, time-consuming, not reproducible and rather inefficient due to the high similarity of adjacent sections. In this thesis, I explore the potential of a semi-automated slice level segmentation framework and a suggestive region level framework which aim to speed up the segmentation process of big bioimaging datasets. The thesis includes two well validated, published, and widely used novel methods and one algorithm which did not yield an improvement compared to the current state-of the-art. The slice-wise method, SmartInterpol, consists of a probabilistic model for semi-automated segmentation of stacks of 2D images, in which the user manually labels a sparse set of sections (e.g., one every n sections), and lets the algorithm complete the segmentation for other sections automatically. The proposed model integrates in a principled manner two families of segmentation techniques that have been very successful in brain imaging: multi-atlas segmentation and convolutional neural networks. Labelling every structure on a sparse set of slices is not necessarily optimal, therefore I also introduce a region level active learning framework which requires the labeller to annotate one region of interest on one slice at the time. The framework exploits partial annotations, weak supervision, and realistic estimates of class and section-specific annotation effort in order to greatly reduce the time it takes to produce accurate segmentations for large histological datasets. Although both frameworks have been created targeting histological datasets, they have been successfully applied to other big bioimaging datasets, reducing labelling effort by up to 60−70% without compromising accuracy
    corecore