1,672 research outputs found

    A novel statistical cerebrovascular segmentation algorithm with particle swarm optimization

    Get PDF
    AbstractWe present an automatic statistical intensity-based approach to extract the 3D cerebrovascular structure from time-of flight (TOF) magnetic resonance angiography (MRA) data. We use the finite mixture model (FMM) to fit the intensity histogram of the brain image sequence, where the cerebral vascular structure is modeled by a Gaussian distribution function and the other low intensity tissues are modeled by Gaussian and Rayleigh distribution functions. To estimate the parameters of the FMM, we propose an improved particle swarm optimization (PSO) algorithm, which has a disturbing term in speeding updating the formula of PSO to ensure its convergence. We also use the ring shape topology of the particles neighborhood to improve the performance of the algorithm. Computational results on 34 test data show that the proposed method provides accurate segmentation, especially for those blood vessels of small sizes

    Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation

    Full text link
    Quantitative Magnetic Resonance Imaging (qMRI) provides researchers insight into pathological and physiological alterations of living tissue, with the help of which researchers hope to predict (local) therapeutic efficacy early and determine optimal treatment schedule. However, the analysis of qMRI has been limited to ad-hoc heuristic methods. Our research provides a powerful statistical framework for image analysis and sheds light on future localized adaptive treatment regimes tailored to the individual's response. We assume in an imperfect world we only observe a blurred and noisy version of the underlying pathological/physiological changes via qMRI, due to measurement errors or unpredictable influences. We use a hidden Markov random field to model the spatial dependence in the data and develop a maximum likelihood approach via the Expectation--Maximization algorithm with stochastic variation. An important improvement over previous work is the assessment of variability in parameter estimation, which is the valid basis for statistical inference. More importantly, we focus on the expected changes rather than image segmentation. Our research has shown that the approach is powerful in both simulation studies and on a real dataset, while quite robust in the presence of some model assumption violations.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS157 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling

    Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease.

    Get PDF
    Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≥1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson's R = -0.69, P < 1 × 10(-7)), and significant grey matter loss and whole brain atrophy occurs annually (P < 0.05). Additionally, the rate of white matter hyperintensity growth was heterogeneous, occurring more rapidly within long association fasciculi. Using voxel-based quantification (family-wise error corrected P < 0.05), we show the rate of white matter hyperintensity progression is associated with increases in cortical grey matter atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities with increasing rates of regional grey matter atrophy, and demonstrate that grey matter atrophy is the major contributor to whole brain atrophy in symptomatic cerebral small vessel disease. These measures provide novel insights into the longitudinal pathogenesis of small vessel disease, and imply that therapies aimed at reducing progression of white matter hyperintensities via end-arteriole damage may protect against secondary brain atrophy and consequent functional morbidity

    Direct vascular contact is a hallmark of cerebral astrocytes

    Full text link
    Astrocytes establish extensive networks via gap junctions that allow each astrocyte to connect indirectly to the vasculature. However, the proportion of astrocytes directly associated with blood vessels is unknown. Here, we quantify structural contacts of cortical astrocytes with the vasculature in vivo. We show that all cortical astrocytes are connected to at least one blood vessel. Moreover, astrocytes contact more vessels in deeper cortical layers where vessel density is known to be higher. Further examination of different brain regions reveals that only the hippocampus, which has the lowest vessel density of all investigated brain regions, harbors single astrocytes with no apparent vascular connection. In summary, we show that almost all gray matter astrocytes have direct contact to the vasculature. In addition to the glial network, a direct vascular access may represent a complementary pathway for metabolite uptake and distribution

    Quantitative Magnetic Resonance Image Analysis via the EM Algorithm with Stochastic Variation

    Get PDF
    Quantitative Magnetic Resonance Imaging (qMRI) provides researchers insight into pathological and physiological alterations of living tissue, with the help of which, researchers hope to predict (local) therapeutic efficacy early and determine optimal treatment schedule. However, the analysis of qMRI has been limited to ad-hoc heuristic methods. Our research provides a powerful statistical framework for image analysis and sheds light on future localized adaptive treatment regimes tailored to the individual’s response. We assume in an imperfect world we only observe a blurred and noisy version of the underlying “true” scene via qMRI, due to measurement errors or unpredictable influences. We use a hidden Markov Random Field to model the unobserved “true” scene and develop a maximum likelihood approach via the Expectation-Maximization algorithm with stochastic variation. An important improvement over previous work is the assessment of variability in parameter estimation, which is the valid basis for statistical inference. Moreover, we focus on recovering the “true” scene rather than segmenting the image. Our research has shown that the approach is powerful in both simulation studies and on a real dataset, while quite robust in the presence of some model assumption violations

    Generalizable automated pixel-level structural segmentation of medical and biological data

    Get PDF
    Over the years, the rapid expansion in imaging techniques and equipments has driven the demand for more automation in handling large medical and biological data sets. A wealth of approaches have been suggested as optimal solutions for their respective imaging types. These solutions span various image resolutions, modalities and contrast (staining) mechanisms. Few approaches generalise well across multiple image types, contrasts or resolution. This thesis proposes an automated pixel-level framework that addresses 2D, 2D+t and 3D structural segmentation in a more generalizable manner, yet has enough adaptability to address a number of specific image modalities, spanning retinal funduscopy, sequential fluorescein angiography and two-photon microscopy. The pixel-level segmentation scheme involves: i ) constructing a phase-invariant orientation field of the local spatial neighbourhood; ii ) combining local feature maps with intensity-based measures in a structural patch context; iii ) using a complex supervised learning process to interpret the combination of all the elements in the patch in order to reach a classification decision. This has the advantage of transferability from retinal blood vessels in 2D to neural structures in 3D. To process the temporal components in non-standard 2D+t retinal angiography sequences, we first introduce a co-registration procedure: at the pairwise level, we combine projective RANSAC with a quadratic homography transformation to map the coordinate systems between any two frames. At the joint level, we construct a hierarchical approach in order for each individual frame to be registered to the global reference intra- and inter- sequence(s). We then take a non-training approach that searches in both the spatial neighbourhood of each pixel and the filter output across varying scales to locate and link microvascular centrelines to (sub-) pixel accuracy. In essence, this \link while extract" piece-wise segmentation approach combines the local phase-invariant orientation field information with additional local phase estimates to obtain a soft classification of the centreline (sub-) pixel locations. Unlike retinal segmentation problems where vasculature is the main focus, 3D neural segmentation requires additional exibility, allowing a variety of structures of anatomical importance yet with different geometric properties to be differentiated both from the background and against other structures. Notably, cellular structures, such as Purkinje cells, neural dendrites and interneurons, all display certain elongation along their medial axes, yet each class has a characteristic shape captured by an orientation field that distinguishes it from other structures. To take this into consideration, we introduce a 5D orientation mapping to capture these orientation properties. This mapping is incorporated into the local feature map description prior to a learning machine. Extensive performance evaluations and validation of each of the techniques presented in this thesis is carried out. For retinal fundus images, we compute Receiver Operating Characteristic (ROC) curves on existing public databases (DRIVE & STARE) to assess and compare our algorithms with other benchmark methods. For 2D+t retinal angiography sequences, we compute the error metrics ("Centreline Error") of our scheme with other benchmark methods. For microscopic cortical data stacks, we present segmentation results on both surrogate data with known ground-truth and experimental rat cerebellar cortex two-photon microscopic tissue stacks.Open Acces

    New marked point process models for microscopy images

    Get PDF
    In developing new materials, the characterization of microstructures is one of the key steps. To characterize the microstructure, many microscope modalities have been devised and improved over decades. With the increase in image resolution in the spatial and time domains, the amount of image data keeps increasing in the fields such as materials science and biomedical engineering. As a result, image processing plays a critical role in this era of science and technology. In materials image analysis, image segmentation and feature detection are considered very important. The first part of this research aims to resolve the segmentation problem caused by blurring artifacts in scanning electron microscopy (SEM) images. This blurring issue can lead to a bridged channel problem, which becomes an obstacle in analyzing the microstructures. To tackle the problem, we propose a joint deconvolution and segmentation (JDS) method. As a segmentation method, we use the expectation-maximization/maximization of the posterior marginals (EM/MPM) method, using the Markov random field (MRF) prior model. Experiments show the proposed method improves the segmentation result at object boundaries. The next phase of the image segmentation is detecting image features. In the second part of this research, we detect channel configurations in materials images. We propose a new approach of channel identification, based on the marked point process (MPP) framework, to effectively detect channels in materials images. To describe a higher level of structures in an image, the MPP framework is more effective than the MRF prior model. The reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm embedded with simulated annealing is used as an optimization method, and a new switching kernel in an RJMCMC is used to reduce computational time. The channel configuration is useful in characterizing materials images. In addition, this information can be used to reduce the bridged channel problem more effectively. In materials image processing, one of the most important goals of feature detection is identifying the 3D structure of objects from 3D microscope datasets. The final part of this research is to perform fast and accurate estimation of 3D object configurations from a 3D dataset. We propose a fast 3D fitting method to improve the computational complexity over a full-search 3D MPP method. Experiments show that the fast 3D fitting method significantly decreases execution time compared to the full 3D MPP method

    Machine learning approaches for early prediction of hypertension.

    Get PDF
    Hypertension afflicts one in every three adults and is a leading cause of mortality in 516, 955 patients in USA. The chronic elevation of cerebral perfusion pressure (CPP) changes the cerebrovasculature of the brain and disrupts its vasoregulation mechanisms. Reported correlations between changes in smaller cerebrovascular vessels and hypertension may be used to diagnose hypertension in its early stages, 10-15 years before the appearance of symptoms such as cognitive impairment and memory loss. Specifically, recent studies hypothesized that changes in the cerebrovasculature and CPP precede the systemic elevation of blood pressure. Currently, sphygmomanometers are used to measure repeated brachial artery pressure to diagnose hypertension after its onset. However, this method cannot detect cerebrovascular alterations that lead to adverse events which may occur prior to the onset of hypertension. The early detection and quantification of these cerebral vascular structural changes could help in predicting patients who are at a high risk of developing hypertension as well as other cerebral adverse events. This may enable early medical intervention prior to the onset of hypertension, potentially mitigating vascular-initiated end-organ damage. The goal of this dissertation is to develop a novel efficient noninvasive computer-aided diagnosis (CAD) system for the early prediction of hypertension. The developed CAD system analyzes magnetic resonance angiography (MRA) data of human brains gathered over years to detect and track cerebral vascular alterations correlated with hypertension development. This CAD system can make decisions based on available data to help physicians on predicting potential hypertensive patients before the onset of the disease
    • …
    corecore