169 research outputs found

    Grid and high performance computing applied to bioinformatics

    Get PDF
    Recent advances in genome sequencing technologies and modern biological data analysis technologies used in bioinformatics have led to a fast and continuous increase in biological data. The difficulty of managing the huge amounts of data currently available to researchers and the need to have results within a reasonable time have led to the use of distributed and parallel computing infrastructures for their analysis. In this context Grid computing has been successfully used. Grid computing is based on a distributed system which interconnects several computers and/or clusters to access global-scale resources. This infrastructure is exible, highly scalable and can achieve high performances with data-compute-intensive algorithms. Recently, bioinformatics is exploring new approaches based on the use of hardware accelerators, such as the Graphics Processing Units (GPUs). Initially developed as graphics cards, GPUs have been recently introduced for scientific purposes by rea- son of their performance per watt and the better cost/performance ratio achieved in terms of throughput and response time compared to other high-performance com- puting solutions. Although developers must have an in-depth knowledge of GPU programming and hardware to be effective, GPU accelerators have produced a lot of impressive results. The use of high-performance computing infrastructures raises the question of finding a way to parallelize the algorithms while limiting data dependency issues in order to accelerate computations on a massively parallel hardware. In this context, the research activity in this dissertation focused on the assessment and testing of the impact of these innovative high-performance computing technolo- gies on computational biology. In order to achieve high levels of parallelism and, in the final analysis, obtain high performances, some of the bioinformatic algorithms applicable to genome data analysis were selected, analyzed and implemented. These algorithms have been highly parallelized and optimized, thus maximizing the GPU hardware resources. The overall results show that the proposed parallel algorithms are highly performant, thus justifying the use of such technology. However, a software infrastructure for work ow management has been devised to provide support in CPU and GPU computation on a distributed GPU-based in- frastructure. Moreover, this software infrastructure allows a further coarse-grained data-parallel parallelization on more GPUs. Results show that the proposed appli- cation speed-up increases with the increase in the number of GPUs

    Grid and high performance computing applied to bioinformatics

    Get PDF
    Recent advances in genome sequencing technologies and modern biological data analysis technologies used in bioinformatics have led to a fast and continuous increase in biological data. The difficulty of managing the huge amounts of data currently available to researchers and the need to have results within a reasonable time have led to the use of distributed and parallel computing infrastructures for their analysis. In this context Grid computing has been successfully used. Grid computing is based on a distributed system which interconnects several computers and/or clusters to access global-scale resources. This infrastructure is exible, highly scalable and can achieve high performances with data-compute-intensive algorithms. Recently, bioinformatics is exploring new approaches based on the use of hardware accelerators, such as the Graphics Processing Units (GPUs). Initially developed as graphics cards, GPUs have been recently introduced for scientific purposes by rea- son of their performance per watt and the better cost/performance ratio achieved in terms of throughput and response time compared to other high-performance com- puting solutions. Although developers must have an in-depth knowledge of GPU programming and hardware to be effective, GPU accelerators have produced a lot of impressive results. The use of high-performance computing infrastructures raises the question of finding a way to parallelize the algorithms while limiting data dependency issues in order to accelerate computations on a massively parallel hardware. In this context, the research activity in this dissertation focused on the assessment and testing of the impact of these innovative high-performance computing technolo- gies on computational biology. In order to achieve high levels of parallelism and, in the final analysis, obtain high performances, some of the bioinformatic algorithms applicable to genome data analysis were selected, analyzed and implemented. These algorithms have been highly parallelized and optimized, thus maximizing the GPU hardware resources. The overall results show that the proposed parallel algorithms are highly performant, thus justifying the use of such technology. However, a software infrastructure for work ow management has been devised to provide support in CPU and GPU computation on a distributed GPU-based in- frastructure. Moreover, this software infrastructure allows a further coarse-grained data-parallel parallelization on more GPUs. Results show that the proposed appli- cation speed-up increases with the increase in the number of GPUs

    Structural variation and the evolution of the mouse genome

    Get PDF
    Genetic variation in populations is governed by four basic forces: mutation, recombination, natural selection and genetic drift. Mutation is the source of new alleles, which are assorted among chromosomes by recombination. Selection and drift dictate the magnitude and direction of changes in allele frequency over time. These forces are intimately linked to meiosis, and asymmetries in meiosis create the opportunity for intragenomic conflict: competition between selfish alleles at the same locus for transmission to progeny. Such conflicts manifest as selection at the population level but subvert the Darwinian concept of fitness. The aim of this thesis is to characterize three of the four basic forces — recombination, mutation and intragenomic conflict — using the house mouse as a model system. I focus on the role of large segmental duplications, long tracts of repeated sequence that make up approximately 10% of mammalian genomes and are the site of the preponderance of structural variation between individuals. First I use two laboratory populations, the Collaborative Cross and the Diversity Outbred, to analyze the effects of sex and genetic background on the rate of recombination. I discover that (crossover) recombination is strongly suppressed in both sexes near large multiallelic copy-number variants. Second I reconstruct in detail the evolution of one such variant, R2d2. I show that R2d2 represents an ancient duplication that has been amplified to more than 100 copies in some lineages of European mice. Alleles with high copy number (R2d2HC) are associated with suppressed recombination but have an extremely high mutation rate. They are also selfish, having risen to high frequency in wild and laboratory populations by meiotic drive, in spite of their deleterious effect on reproductive fitness. Finally I perform the first comprehensive survey of sequence and structural variation on the mouse Y chromosome. I show that Y chromosomes have reduced sequence diversity relative to neutral expectations due to a strong population bottleneck in the recent past. I find that Y chromsomes vary dramatically in copy number of testis-specific genes, possibly as a side effect of past intragenomic conflict with the X chromosome.Doctor of Philosoph

    Differential evolution of non-coding DNA across eukaryotes and its close relationship with complex multicellularity on Earth

    Get PDF
    Here, I elaborate on the hypothesis that complex multicellularity (CM, sensu Knoll) is a major evolutionary transition (sensu Szathmary), which has convergently evolved a few times in Eukarya only: within red and brown algae, plants, animals, and fungi. Paradoxically, CM seems to correlate with the expansion of non-coding DNA (ncDNA) in the genome rather than with genome size or the total number of genes. Thus, I investigated the correlation between genome and organismal complexities across 461 eukaryotes under a phylogenetically controlled framework. To that end, I introduce the first formal definitions and criteria to distinguish ‘unicellularity’, ‘simple’ (SM) and ‘complex’ multicellularity. Rather than using the limited available estimations of unique cell types, the 461 species were classified according to our criteria by reviewing their life cycle and body plan development from literature. Then, I investigated the evolutionary association between genome size and 35 genome-wide features (introns and exons from protein-coding genes, repeats and intergenic regions) describing the coding and ncDNA complexities of the 461 genomes. To that end, I developed ‘GenomeContent’, a program that systematically retrieves massive multidimensional datasets from gene annotations and calculates over 100 genome-wide statistics. R-scripts coupled to parallel computing were created to calculate >260,000 phylogenetic controlled pairwise correlations. As previously reported, both repetitive and non-repetitive DNA are found to be scaling strongly and positively with genome size across most eukaryotic lineages. Contrasting previous studies, I demonstrate that changes in the length and repeat composition of introns are only weakly or moderately associated with changes in genome size at the global phylogenetic scale, while changes in intron abundance (within and across genes) are either not or only very weakly associated with changes in genome size. Our evolutionary correlations are robust to: different phylogenetic regression methods, uncertainties in the tree of eukaryotes, variations in genome size estimates, and randomly reduced datasets. Then, I investigated the correlation between the 35 genome-wide features and the cellular complexity of the 461 eukaryotes with phylogenetic Principal Component Analyses. Our results endorse a genetic distinction between SM and CM in Archaeplastida and Metazoa, but not so clearly in Fungi. Remarkably, complex multicellular organisms and their closest ancestral relatives are characterized by high intron-richness, regardless of genome size. Finally, I argue why and how a vast expansion of non-coding RNA (ncRNA) regulators rather than of novel protein regulators can promote the emergence of CM in Eukarya. As a proof of concept, I co-developed a novel ‘ceRNA-motif pipeline’ for the prediction of “competing endogenous” ncRNAs (ceRNAs) that regulate microRNAs in plants. We identified three candidate ceRNAs motifs: MIM166, MIM171 and MIM159/319, which were found to be conserved across land plants and be potentially involved in diverse developmental processes and stress responses. Collectively, the findings of this dissertation support our hypothesis that CM on Earth is a major evolutionary transition promoted by the expansion of two major ncDNA classes, introns and regulatory ncRNAs, which might have boosted the irreversible commitment of cell types in certain lineages by canalizing the timing and kinetics of the eukaryotic transcriptome.:Cover page Abstract Acknowledgements Index 1. The structure of this thesis 1.1. Structure of this PhD dissertation 1.2. Publications of this PhD dissertation 1.3. Computational infrastructure and resources 1.4. Disclosure of financial support and information use 1.5. Acknowledgements 1.6. Author contributions and use of impersonal and personal pronouns 2. Biological background 2.1. The complexity of the eukaryotic genome 2.2. The problem of counting and defining “genes” in eukaryotes 2.3. The “function” concept for genes and “dark matter” 2.4. Increases of organismal complexity on Earth through multicellularity 2.5. Multicellularity is a “fitness transition” in individuality 2.6. The complexity of cell differentiation in multicellularity 3. Technical background 3.1. The Phylogenetic Comparative Method (PCM) 3.2. RNA secondary structure prediction 3.3. Some standards for genome and gene annotation 4. What is in a eukaryotic genome? GenomeContent provides a good answer 4.1. Background 4.2. Motivation: an interoperable tool for data retrieval of gene annotations 4.3. Methods 4.4. Results 4.5. Discussion 5. The evolutionary correlation between genome size and ncDNA 5.1. Background 5.2. Motivation: estimating the relationship between genome size and ncDNA 5.3. Methods 5.4. Results 5.5. Discussion 6. The relationship between non-coding DNA and Complex Multicellularity 6.1. Background 6.2. Motivation: How to define and measure complex multicellularity across eukaryotes? 6.3. Methods 6.4. Results 6.5. Discussion 7. The ceRNA motif pipeline: regulation of microRNAs by target mimics 7.1. Background 7.2. A revisited protocol for the computational analysis of Target Mimics 7.3. Motivation: a novel pipeline for ceRNA motif discovery 7.4. Methods 7.5. Results 7.6. Discussion 8. Conclusions and outlook 8.1. Contributions and lessons for the bioinformatics of large-scale comparative analyses 8.2. Intron features are evolutionarily decoupled among themselves and from genome size throughout Eukarya 8.3. “Complex multicellularity” is a major evolutionary transition 8.4. Role of RNA throughout the evolution of life and complex multicellularity on Earth 9. Supplementary Data Bibliography Curriculum Scientiae Selbständigkeitserklärung (declaration of authorship

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Tracking Biped Motion in Pervasive Environment

    Get PDF
    Textiles are ubiquitous to humans since ages. Transistors made of silicon have made a deep impact in modern industry. A new field of research called wearable electronics integrates both these worlds to provide intelligent new services. Based on modern technologies of textile manufacturing, a carpet is embedded with a network of computing devices. One of their applications is to sense, when someone walks over them. This carpet was used to track the path a person took on his walk. When a person steps on the carpet, embedded sensors in the carpet get activated. These activations are stored at a monitoring PC as a log file. This data is processed and carefully viewed by data mining algorithms to identify hidden patterns that reveal the trails of the subject on his motion over the carpet. Different methods for validating the data mining algorithms are presented. These methods are perfected to produce an ideal reference in a format that can be directly compared with the estimated results of the algorithms. The evaluation results show a better performance for the new approach compared to the state-of-the-art technologies. Veracious testing, discussions, suggestions and their impact after implementation, are discussed in detail. The concepts used in the data mining algorithms are structurally sound and maintainable. Suggestions are given for further work on this system as whole. The footsteps of the person walking on the carpet are identified. The trajectory of walk is traced. The carpet can be used in a variety of domains. Rich examples on usage, assisted with augmented literature conclude this work

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Machine Learning Approaches for Natural Resource Data

    Get PDF
    Abstract Real life applications involving efficient management of natural resources are dependent on accurate geographical information. This information is usually obtained by manual on-site data collection, via automatic remote sensing methods, or by the mixture of the two. Natural resource management, besides accurate data collection, also requires detailed analysis of this data, which in the era of data flood can be a cumbersome process. With the rising trend in both computational power and storage capacity, together with lowering hardware prices, data-driven decision analysis has an ever greater role. In this thesis, we examine the predictability of terrain trafficability conditions and forest attributes by using a machine learning approach with geographic information system data. Quantitative measures on the prediction performance of terrain conditions using natural resource data sets are given through five distinct research areas located around Finland. Furthermore, the estimation capability of key forest attributes is inspected with a multitude of modeling and feature selection techniques. The research results provide empirical evidence on whether the used natural resource data is sufficiently accurate enough for practical applications, or if further refinement on the data is needed. The results are important especially to forest industry since even slight improvements to the natural resource data sets utilized in practice can result in high saves in terms of operation time and costs. Model evaluation is also addressed in this thesis by proposing a novel method for estimating the prediction performance of spatial models. Classical model goodness of fit measures usually rely on the assumption of independently and identically distributed data samples, a characteristic which normally is not true in the case of spatial data sets. Spatio-temporal data sets contain an intrinsic property called spatial autocorrelation, which is partly responsible for breaking these assumptions. The proposed cross validation based evaluation method provides model performance estimation where optimistic bias due to spatial autocorrelation is decreased by partitioning the data sets in a suitable way. Keywords: Open natural resource data, machine learning, model evaluationTiivistelmä Käytännön sovellukset, joihin sisältyy luonnonvarojen hallintaa ovat riippuvaisia tarkasta paikkatietoaineistosta. Tämä paikkatietoaineisto kerätään usein manuaalisesti paikan päällä, automaattisilla kaukokartoitusmenetelmillä tai kahden edellisen yhdistelmällä. Luonnonvarojen hallinta vaatii tarkan aineiston keräämisen lisäksi myös sen yksityiskohtaisen analysoinnin, joka tietotulvan aikakautena voi olla vaativa prosessi. Nousevan laskentatehon, tallennustilan sekä alenevien laitteistohintojen myötä datapohjainen päätöksenteko on yhä suuremmassa roolissa. Tämä väitöskirja tutkii maaston kuljettavuuden ja metsäpiirteiden ennustettavuutta käyttäen koneoppimismenetelmiä paikkatietoaineistojen kanssa. Maaston kuljettavuuden ennustamista mitataan kvantitatiivisesti käyttäen kaukokartoitusaineistoa viideltä eri tutkimusalueelta ympäri Suomea. Tarkastelemme lisäksi tärkeimpien metsäpiirteiden ennustettavuutta monilla eri mallintamistekniikoilla ja piirteiden valinnalla. Väitöstyön tulokset tarjoavat empiiristä todistusaineistoa siitä, onko käytetty luonnonvaraaineisto riittävän laadukas käytettäväksi käytännön sovelluksissa vai ei. Tutkimustulokset ovat tärkeitä erityisesti metsäteollisuudelle, koska pienetkin parannukset luonnonvara-aineistoihin käytännön sovelluksissa voivat johtaa suuriin säästöihin niin operaatioiden ajankäyttöön kuin kuluihin. Tässä työssä otetaan kantaa myös mallin evaluointiin esittämällä uuden menetelmän spatiaalisten mallien ennustuskyvyn estimointiin. Klassiset mallinvalintakriteerit nojaavat yleensä riippumattomien ja identtisesti jakautuneiden datanäytteiden oletukseen, joka ei useimmiten pidä paikkaansa spatiaalisilla datajoukoilla. Spatio-temporaaliset datajoukot sisältävät luontaisen ominaisuuden, jota kutsutaan spatiaaliseksi autokorrelaatioksi. Tämä ominaisuus on osittain vastuussa näiden oletusten rikkomisesta. Esitetty ristiinvalidointiin perustuva evaluointimenetelmä tarjoaa mallin ennustuskyvyn mitan, missä spatiaalisen autokorrelaation vaikutusta vähennetään jakamalla datajoukot sopivalla tavalla. Avainsanat: Avoin luonnonvara-aineisto, koneoppiminen, mallin evaluoint
    corecore