49,280 research outputs found

    Event-Based Motion Segmentation by Motion Compensation

    Full text link
    In contrast to traditional cameras, whose pixels have a common exposure time, event-based cameras are novel bio-inspired sensors whose pixels work independently and asynchronously output intensity changes (called "events"), with microsecond resolution. Since events are caused by the apparent motion of objects, event-based cameras sample visual information based on the scene dynamics and are, therefore, a more natural fit than traditional cameras to acquire motion, especially at high speeds, where traditional cameras suffer from motion blur. However, distinguishing between events caused by different moving objects and by the camera's ego-motion is a challenging task. We present the first per-event segmentation method for splitting a scene into independently moving objects. Our method jointly estimates the event-object associations (i.e., segmentation) and the motion parameters of the objects (or the background) by maximization of an objective function, which builds upon recent results on event-based motion-compensation. We provide a thorough evaluation of our method on a public dataset, outperforming the state-of-the-art by as much as 10%. We also show the first quantitative evaluation of a segmentation algorithm for event cameras, yielding around 90% accuracy at 4 pixels relative displacement.Comment: When viewed in Acrobat Reader, several of the figures animate. Video: https://youtu.be/0q6ap_OSBA

    Semantic web technologies for video surveillance metadata

    Get PDF
    Video surveillance systems are growing in size and complexity. Such systems typically consist of integrated modules of different vendors to cope with the increasing demands on network and storage capacity, intelligent video analytics, picture quality, and enhanced visual interfaces. Within a surveillance system, relevant information (like technical details on the video sequences, or analysis results of the monitored environment) is described using metadata standards. However, different modules typically use different standards, resulting in metadata interoperability problems. In this paper, we introduce the application of Semantic Web Technologies to overcome such problems. We present a semantic, layered metadata model and integrate it within a video surveillance system. Besides dealing with the metadata interoperability problem, the advantages of using Semantic Web Technologies and the inherent rule support are shown. A practical use case scenario is presented to illustrate the benefits of our novel approach

    Segmenting Foreground Objects from a Dynamic Textured Background via a Robust Kalman Filter

    Full text link
    The algorithm presented in this paper aims to segment the foreground objects in video (e.g., people) given time-varying, textured backgrounds. Examples of time-varying backgrounds include waves on water, clouds moving, trees waving in the wind, automobile traffic, moving crowds, escalators, etc. We have developed a novel foreground-background segmentation algorithm that explicitly accounts for the non-stationary nature and clutter-like appearance of many dynamic textures. The dynamic texture is modeled by an Autoregressive Moving Average Model (ARMA). A robust Kalman filter algorithm iteratively estimates the intrinsic appearance of the dynamic texture, as well as the regions of the foreground objects. Preliminary experiments with this method have demonstrated promising results

    An improved background segmentation method for ghost removals

    Get PDF
    With ongoing research assessment in higher education and the introduction of master’s‐level work in initial teacher education, the growing need for teacher educators to develop research identities is discussed in relation to mentoring and support in two universities. Twelve interviews—with three teacher educators and three research mentors from each university—were carried out, in order to identify effective mentoring practices and other forms of support, as well as any barriers or problems encountered in developing a research profile. An innovative aspect of the methodological approach is that beginning researchers from the teacher education faculty in both universities undertook the interviewing and co‐authored the article. The need for an entitlement to and protection of research time is stressed, as well as a range of supportive practices within an active research culture. It is argued that this aspect of teacher educators’ professional development requires as much attention as the pedagogical aspects of their rol
    • 

    corecore