4,067 research outputs found

    A High Quality Text-To-Speech System Composed of Multiple Neural Networks

    Full text link
    While neural networks have been employed to handle several different text-to-speech tasks, ours is the first system to use neural networks throughout, for both linguistic and acoustic processing. We divide the text-to-speech task into three subtasks, a linguistic module mapping from text to a linguistic representation, an acoustic module mapping from the linguistic representation to speech, and a video module mapping from the linguistic representation to animated images. The linguistic module employs a letter-to-sound neural network and a postlexical neural network. The acoustic module employs a duration neural network and a phonetic neural network. The visual neural network is employed in parallel to the acoustic module to drive a talking head. The use of neural networks that can be retrained on the characteristics of different voices and languages affords our system a degree of adaptability and naturalness heretofore unavailable.Comment: Source link (9812006.tar.gz) contains: 1 PostScript file (4 pages) and 3 WAV audio files. If your system does not support Windows WAV files, try a tool like "sox" to translate the audio into a format of your choic

    Rhythm-Flexible Voice Conversion without Parallel Data Using Cycle-GAN over Phoneme Posteriorgram Sequences

    Full text link
    Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody in speech, which is different for different speakers. Models like cycle-consistent adversarial network (Cycle-GAN) and variational auto-encoder (VAE) have been successfully applied to voice conversion tasks without parallel data. However, due to the neural network architectures and feature vectors chosen for these approaches, the length of the predicted utterance has to be fixed to that of the input utterance, which limits the flexibility in mimicking the speaking rates and rhythmic patterns for the target speaker. On the other hand, sequence-to-sequence learning model was used to remove the above length constraint, but parallel training data are needed. In this paper, we propose an approach utilizing sequence-to-sequence model trained with unsupervised Cycle-GAN to perform the transformation between the phoneme posteriorgram sequences for different speakers. In this way, the length constraint mentioned above is removed to offer rhythm-flexible voice conversion without requiring parallel data. Preliminary evaluation on two datasets showed very encouraging results.Comment: 8 pages, 6 figures, Submitted to SLT 201
    • …
    corecore