5,917 research outputs found

    Biology of Applied Digital Ecosystems

    Full text link
    A primary motivation for our research in Digital Ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic problems. However, the biological processes that contribute to these properties have not been made explicit in Digital Ecosystems research. Here, we discuss how biological properties contribute to the self-organising features of biological ecosystems, including population dynamics, evolution, a complex dynamic environment, and spatial distributions for generating local interactions. The potential for exploiting these properties in artificial systems is then considered. We suggest that several key features of biological ecosystems have not been fully explored in existing digital ecosystems, and discuss how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, with measures originating from theoretical ecology, to confirm its likeness to a biological ecosystem. Including the responsiveness to requests for applications from the user base, as a measure of the 'ecological succession' (development).Comment: 9 pages, 4 figure, conferenc

    Supply chain transformation programme : prospectus

    Get PDF

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    Ecosystem-Oriented Distributed Evolutionary Computing

    Full text link
    We create a novel optimisation technique inspired by natural ecosystems, where the optimisation works at two levels: a first optimisation, migration of genes which are distributed in a peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. We consider from the domain of computer science distributed evolutionary computing, with the relevant theory from the domain of theoretical biology, including the fields of evolutionary and ecological theory, the topological structure of ecosystems, and evolutionary processes within distributed environments. We then define ecosystem- oriented distributed evolutionary computing, imbibed with the properties of self-organisation, scalability and sustainability from natural ecosystems, including a novel form of distributed evolu- tionary computing. Finally, we conclude with a discussion of the apparent compromises resulting from the hybrid model created, such as the network topology.Comment: 8 pages, 5 figures. arXiv admin note: text overlap with arXiv:1112.0204, arXiv:0712.4159, arXiv:0712.4153, arXiv:0712.4102, arXiv:0910.067

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Towards solutions for assistive technology

    Get PDF
    Introduction What is assistive technology? The agreed World Health Organisation definition is "Assistive technology can be defined as “any piece of equipment, or product, whether it is acquired commercially, modified, or customized, that is used to increase, maintain, or improve the functional capabilities of individuals with disabilities” (WHO, 2011) The array of possible assistive technology products and solutions reflects the diversity of the needs of people with disabilities – ranging from digital technologies that can support social engagement, communication, employment, learning, memory, planning and safe guarding services through to products and devices that support mobility and personal care requirements. Typically as the complexities of assistive technology solutions increase, so do the costs and potential risks (if not appropriately set up or maintained). This document is primarily focused on the Assistive Technology solutions derived from aids and equipment. Home and vehicle modifications and prosthetics have not yet been explored in the same level of detail and will be subject of further work. Proposed approach The proposed assistive technology service approach has been developed in line with the strategic goals of the NDIA. It is one aspect of a broader strategic approach the NDIA has to using technologies to enhance its engagement and management of relationships, services and supports with suppliers, providers, participants and the Australian community. The NDIA’s goal is to use technology in its various forms to ensure that services, supports, and communications between all stakeholders are as streamlined as possible and services are timely and effective. This document outlines the elements of a proposed service delivery approach for individuals to access assistive technology solutions and is based on the three key objectives outlined above

    Sustainable product development strategies: Business planning and performance implications

    Get PDF
    Copyright © 2012 by Institution of Mechanical Engineers. This is the author's accepted manuscript. The final published article is available from the link below.Manufacturing firms are under many financial and competitive pressures which focus attention on the performance of their manufacturing processes. In this paper the opportunities for improving the environmental impact of products within the constraints of existing manufacturing infrastructure are examined. Approaches which support sustainability in two aspects are proposed, firstly, the provision of products to the users in ways which extend the product life and secondly, manufacturing approaches which reduce resource usage. This paper outlines three different sustainable development strategies for different product types and describes the cost implications for manufacturers across the life-cycle. The performance measures affected by these strategies are examined drawing on product development case studies from a number of high technology sectors to highlight the different approaches taken. The results are intended to aid manufacturers during the earliest stages of business planning to consider alternative product development approaches which are more sustainable

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research
    corecore