8 research outputs found

    Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    Get PDF
    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies

    Soybean

    Get PDF
    Soybean is an agricultural crop of tremendous economic importance. Soybean and food items derived from it form dietary components of numerous people, especially those living in the Orient. The health benefits of soybean have attracted the attention of nutritionists as well as common people

    Toward commercial realisation of whole field interferometric analysis

    Get PDF
    The objective of this work was to produce an instrument which could undertake wholefield inspection and displacement measurement utilising a non-contacting technology. The instrument has been designed to permit operation by engineers not necessarily familiar with the underlying technology and produce results in a meaningful form. Of the possible techniques considered Holographic Interferometry was originally identified as meeting these objectives. Experimental work undertaken 'provides' data which confirms the potential of the technique for solving problems but also highlights some difficulties. In order to perform a complete three dimensional displacement analysis a number of holographic views must be recorded. Considerable effort is required to extract quantitative data from the holograms. Error analysis of the experimental arrangement has highlighted a number of practical restrictions which lead to data uncertainties. Qualitative analysis of engineering components using Holographic Interferometry has been successfully undertaken and results in useful analytical data which is used in three different engineering design programmes. Unfortunately, attempts to quantify the data to provide strain values relies upon double differentiation of the fringe field, a process that is highly sensitive to fringe position errors. In spite of this, these experiments provided the confidence that optical interferometry is able to produce data of suitable displacement sensitivity, with results acceptable to other engineers.....

    The development of high-speed PIV techniques and their application to jet noise measurement

    Get PDF
    This thesis describes the design, development and deployment of a high-speed jet flow measurement system. The apparatus was created in response to the need to collect a large quantity of statistically-converged aerodynamic data from a series of commercial turbofan engine models. This acquisition was performed in conjunction with acoustic measurements as part of the ED CoJeN project to investigate jet noise production, and associated noise reduction techniques. Particle Image Velocimetry is a well established flow measurement technique, but its application outside of the laboratory can be limited by a relatively low sample rate and' the need to operate in a hostile environment. This thesis presents a multiple camera technique - used as the basis for the j et measurement system - that is capable of acquiring both time-series PIV data at MHz rates, and continuous, statistically independent measurements at up to 14 Hz. The resultant PIV measurement rig was therefore capable of acquiring time-averaged velocity and turbulence data from the whole of a 110 scale coaxial engine exhaust plume (down to 4m or 20D) in no more than 1 hour. The -500aC Mach:5 0.9 jets were also scanned volumetrically in order to check the spatial alignment of the nozzle and flow streams,.and all PIV measurements were synchronised to simultaneous LDA acquisition, thus enabling the data to be validated. Finally, the cameras were used to acquire novel6-frame time-series data at:5 330 kHz, which was used to calculate time-space correlations within the exhaust. By providing a highly automated and completely remote-controlled system, the exhaust measurements could be repeated over 3 operating conditions and 2 nozzle geometries, thereby providing a comprehensive description of the flow field. The data, having been systematically post-processed, has been shown to agree well with concurrent measurements, and it will now be used to validate CFD models of coaxial jet flow. By improving the quality of computational flow prediction in this way, the time taken to design and test quieter jet engines will be significantly reduced.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Energy: A special bibliography with indexes, April 1974

    Get PDF
    This literature survey of special energy and energy related documents lists 1708 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1968, and December 31, 1973. Citations from International Aerospace Abstracts (IAA) and Scientific and Technical Aerospace Reports (STAR) are grouped according to the following subject categories: energy systems; solar energy; primary energy sources; secondary energy sources; energy conversion; energy transport, transmission, and distribution; and energy storage. The index section includes the subject, personal author, corporate source, contract, report, and accession indexes

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Journal of the American Society of Sugar Beet Technologists, Vol.15 No.1 April 1968

    Get PDF
    corecore