260 research outputs found

    Tie-zone : the bridge between watershed transforms and fuzzy connectedness

    Get PDF
    Orientador: Roberto de Alencar LotufoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Esta tese introduz o novo conceito de transformada de zona de empate que unifica as mĂșltiplas soluçÔes de uma transformada de watershed, conservando apenas as partes comuns em todas estas, tal que as partes que diferem constituem a zona de empate. A zona de empate aplicada ao watershed via transformada imagem-floresta (TZ-IFT-WT) se revela um elo inĂ©dito entre transformadas de watershed baseadas em paradigmas muito diferentes: gota d'ĂĄgua, inundação, caminhos Ăłtimos e floresta de peso mĂ­nimo. Para todos esses paradigmas e os algoritmos derivados, Ă© um desafio se ter uma solução Ășnica, fina, e que seja consistente com uma definição. Por isso, propĂ”e-se um afinamento da zona de empate, Ășnico e consistente. AlĂ©m disso, demonstra-se que a TZ-IFT-WT tambĂ©m Ă© o dual de mĂ©todos de segmentação baseados em conexidade nebulosa. Assim, a ponte criada entre as abordagens morfolĂłgica e nebulosa permite aproveitar avanços de ambas. Em conseqĂŒĂȘncia disso, o conceito de nĂșcleo de robustez para as sementes Ă© explorado no caso do watershed.Abstract: This thesis introduces the new concept of tie-zone transform that unifies the multiple solutions of a watershed transform, by conserving only the common parts among them such that the differing parts constitute the tie zone. The tie zone applied to the watershed via image-foresting transform (TZ-IFTWT) proves to be a link between watershed transforms based on very different paradigms: drop of water, flooding, optimal paths and forest of minimum weight. For all these paradigms and the derived algorithms, it is a challenge to get a unique and thin solution which is consistent with a definition. That is why we propose a unique and consistent thinning of the tie zone. In addition, we demonstrate that the TZ-IFT-WT is also the dual of segmentation methods based on fuzzy connectedness. Thus, the bridge between the morphological and the fuzzy approaches allows to take benefit from the advance of both. As a consequence, the concept of cores of robustness for the seeds is exploited in the case of watersheds.DoutoradoEngenharia de ComputaçãoDoutor em Engenharia ElĂ©tric

    Neutro-Connectedness Theory, Algorithms and Applications

    Get PDF
    Connectedness is an important topological property and has been widely studied in digital topology. However, three main challenges exist in applying connectedness to solve real world problems: (1) the definitions of connectedness based on the classic and fuzzy logic cannot model the “hidden factors” that could influence our decision-making; (2) these definitions are too general to be applied to solve complex problem; and (4) many measurements of connectedness are heavily dependent on the shape (spatial distribution of vertices) of the graph and violate the intuitive idea of connectedness. This research focused on solving these challenges by redesigning the connectedness theory, developing fast algorithms for connectedness computation, and applying the newly proposed theory and algorithms to solve challenges in real problems. The newly proposed Neutro-Connectedness (NC) generalizes the conventional definitions of connectedness and can model uncertainty and describe the part and the whole relationship. By applying the dynamic programming strategy, a fast algorithm was proposed to calculate NC for general dataset. It is not just calculating NC map, and the output NC forest can discover a dataset’s topological structure regarding connectedness. In the first application, interactive image segmentation, two approaches were proposed to solve the two most difficult challenges: user interaction-dependence and intense interaction. The first approach, named NC-Cut, models global topologic property among image regions and reduces the dependence of segmentation performance on the appearance models generated by user interactions. It is less sensitive to the initial region of interest (ROI) than four state-of-the-art ROI-based methods. The second approach, named EISeg, provides user with visual clues to guide the interacting process based on NC. It reduces user interaction greatly by guiding user to where interacting can produce the best segmentation results. In the second application, NC was utilized to solve the challenge of weak boundary problem in breast ultrasound image segmentation. The approach can model the indeterminacy resulted from weak boundaries better than fuzzy connectedness, and achieved more accurate and robust result on our dataset with 131 breast tumor cases

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    A Review of MRI Acute Ischemic Stroke Lesion Segmentation

    Get PDF
    Immediate treatment of a stroke can minimize long-term effects and even help reduce death risk. In the ischemic stroke cases, there are two zones of injury which are ischemic core and ischemic penumbra zone. The ischemic penumbra indicates the part that is located around the infarct core that is at risk of developing a brain infarction. Recently, various segmentation methods of infarct lesion from the MRI input images were developed and these methods gave a high accuracy in the extraction and detection of the infarct core. However, only some limited works have been reported to isolate the penumbra tissues and infarct core separately. The challenges exist in ischemic core identification are traditional approach prone to error, time-consuming and tedious for medical expert which could delay the treatment. In this paper, we study and analyse the segmentation algorithms for brain MRI ischemic of different categories. The focus of the review is mainly on the segmentation algorithms of infarct core with penumbra and infarct core only. We highlight the advantages and limitations alongside the discussion of the capabilities of these segmentation algorithms and its key challenges. The paper also devised a generic structure for automated stroke lesion segmentation. The performance of these algorithms was investigated by comparing different parameters of the surveyed algorithms. In addition, a new structure of the segmentation process for segmentation of penumbra is proposed by considering the challenges remains. The best accuracy for segmentation of infarct core and penumbra tissues is 82.1% whereas 99.1% for segmentation infarct core only. Meanwhile, the shortest average computational time recorded was 3.42 seconds for segmenting 10 slices of MR images. This paper presents an inclusive analysis of the discussed papers based on different categories of the segmentation algorithm. The proposed structure is important to enable a more robust and accurate assessment in clinical practice. This could be an opportunity for the medical and engineering sector to work together in designing a complete end-to-end automatic framework in detecting stroke lesion and penumbra

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    Cotutela con il Dipartimento di Biotecnologie e Scienze della Vita, UniversiitĂ  degli Studi dell'Insubria.openThis Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that oïŹ€ers, in addition to all the functionality speciïŹcally described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient.openInformaticaPedoia, ValentinaPedoia, Valentin

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images
    • 

    corecore