106,515 research outputs found

    A Bootstrapping architecture for time expression recognition in unlabelled corpora via syntactic-semantic patterns

    Get PDF
    In this paper we describe a semi-supervised approach to the extraction of time expression mentions in large unlabelled corpora based on bootstrapping. Bootstrapping techniques rely on a relatively small amount of initial human-supplied examples (termed “seeds”) of the type of entity or concept to be learned, in order to capture an initial set of patterns or rules from the unlabelled text that extract the supplied data. In turn, the learned patterns are employed to find new potential examples, and the process is repeated to grow the set of patterns and (optionally) the set of examples. In order to prevent the learned pattern set from producing spurious results, it becomes essential to implement a ranking and selection procedure to filter out “bad” patterns and, depending on the case, new candidate examples. Therefore, the type of patterns employed (knowledge representation) as well as the ranking and selection procedure are paramount to the quality of the results. We present a complete bootstrapping algorithm for recognition of time expressions, with a special emphasis on the type of patterns used (a combination of semantic and morpho- syntantic elements) and the ranking and selection criteria. Bootstrap- ping techniques have been previously employed with limited success for several NLP problems, both of recognition and classification, but their application to time expression recognition is, to the best of our knowledge, novel. As of this writing, the described architecture is in the final stages of implementation, with experimention and evalution being already underway.Postprint (published version

    PACE: Pattern Accurate Computationally Efficient Bootstrapping for Timely Discovery of Cyber-Security Concepts

    Full text link
    Public disclosure of important security information, such as knowledge of vulnerabilities or exploits, often occurs in blogs, tweets, mailing lists, and other online sources months before proper classification into structured databases. In order to facilitate timely discovery of such knowledge, we propose a novel semi-supervised learning algorithm, PACE, for identifying and classifying relevant entities in text sources. The main contribution of this paper is an enhancement of the traditional bootstrapping method for entity extraction by employing a time-memory trade-off that simultaneously circumvents a costly corpus search while strengthening pattern nomination, which should increase accuracy. An implementation in the cyber-security domain is discussed as well as challenges to Natural Language Processing imposed by the security domain.Comment: 6 pages, 3 figures, ieeeTran conference. International Conference on Machine Learning and Applications 201

    Sparse experimental design : an effective an efficient way discovering better genetic algorithm structures

    Get PDF
    The focus of this paper is the demonstration that sparse experimental design is a useful strategy for developing Genetic Algorithms. It is increasingly apparent from a number of reports and papers within a variety of different problem domains that the 'best' structure for a GA may be dependent upon the application. The GA structure is defined as both the types of operators and the parameters settings used during operation. The differences observed may be linked to the nature of the problem, the type of fitness function, or the depth or breadth of the problem under investigation. This paper demonstrates that advanced experimental design may be adopted to increase the understanding of the relationships between the GA structure and the problem domain, facilitating the selection of improved structures with a minimum of effort

    Bots, Seeds and People: Web Archives as Infrastructure

    Full text link
    The field of web archiving provides a unique mix of human and automated agents collaborating to achieve the preservation of the web. Centuries old theories of archival appraisal are being transplanted into the sociotechnical environment of the World Wide Web with varying degrees of success. The work of the archivist and bots in contact with the material of the web present a distinctive and understudied CSCW shaped problem. To investigate this space we conducted semi-structured interviews with archivists and technologists who were directly involved in the selection of content from the web for archives. These semi-structured interviews identified thematic areas that inform the appraisal process in web archives, some of which are encoded in heuristics and algorithms. Making the infrastructure of web archives legible to the archivist, the automated agents and the future researcher is presented as a challenge to the CSCW and archival community
    • …
    corecore