274 research outputs found

    Multi crop high efficiency seed drill with solar hybrid seed metering: A step toward precision and sustainability

    Get PDF
    High crop production with limited energy resources is always the priority area of developing countries. Conventional agricultural experimenting and crop production methods are time-consuming, challenging, laborious, and energy intensive. Various developments and experimental studies have been carried out for advancement in agriculture technologies. This study is mainly focused on the design and development of a unique high-efficiency seed drill machine to increase the energy efficiency of agricultural experiments, and crop production and conserve the tillage, seed, fertilizer, and power requirement. This machine has a special seed dividing head and seed distributor triggered with a mechanical timer. The mechanical timer is responsible to deliver seed to the seed distributor as per fixed plotting intervals. The seed distribution unit distributes the seeds uniformly in all furrows as per the pre-decided seed rate aided with a centrifugal glider aided with a DC motor powered by a 30 W solar PV plate and backup battery. Moreover, the machine has 9 Ă— 9 s-type spring tines for seed and fertilizer, which are mainly designed for better soil pulverization and aeration with significant in-field resource conservation as per conventional alternatives. The effective width is seven feet and adjustable rows with versatile seed rate options. Overall, the results from different field tests verified the uniform seed dispersal with improved germination rate. The analysis of power requirements compared to conventional machines results in the 40% less power requirement. Overall, the machine has customized unique features for experiments and energy-efficient precision agriculture to conserve input resources

    Modelling and optimisation of no-till seeder dynamics for precise seeding depth

    Get PDF
    Achieving better seeding depth consistency in no-till seeding is a critical performance metric of the seeding machine and is of great importance due to its profound effect on reliable seed germination and seedling emergence resulting in a yield increase. Growing implementation of no-tillage in big size farms requires high-capacity seeding machines with increased operation speed and working width. Thus, the increased capacity of the seeding machine as well as harsh soil conditions like the surface undulations and the presence of previous crop residues make the desired working quality of no-till seeders challenging for both designers and manufacturers. The aim of this cumulative dissertation was to optimise a no-till seeder dynamics in terms of vertical motion stability for better seed placement under realistic high-capacity performance. To fulfil this aim, an approach to achieve the desired dynamic behaviour of the seeder was carried out based on three phases: (1) evaluation of the seeder dynamic performance by defining the relationship between the seeder dynamics and the corresponding seeding depth variation, (2) modelling and simulation of the seeding assembly motion dynamics to specify a control system (e.g. MR damper system) for dynamics improvement, (3) implementation of the defined system into the seeding assembly and testing of the new seeding assembly prototype. The present work was the first approach to optimise the dynamic motion behaviour of a no-till seeder by implementing an MR damper system into its seeding assembly for better seed placement under realistic high-capacity working conditions. The AMAZONEN no-till direct seeder was an ideal candidate for this investigation as it contains 12 identical tine type seeding assemblies where the operating depth is defined by the position of the packer wheel. Under working conditions, the maximum width is 3 m resulted from the inter-row distance of 0.25 m between the seeding assemblies. The seeding assemblies are provided with downforces using a hydraulic cylinder in order to keep the packer wheel of the assemblies on the ground and to maintain a consistent seeding depth during seeding operation. Concurrent and geo-referenced sensor data made it possible to acquire the dynamics parameters of the seeder and the corresponding soil surface profiles (the point where the packer wheel touches the ground). This together with the measured 3D geo-referenced position of the seeds gave the opportunity to define the reason of high variations in seeding depth. A sensor-frame was developed, utilising up-to-date sensor technology, to capture the seeder dynamics and to determine the corresponding soil surface profile. A combination of strains recorded at the three corresponding points of the seeding assembly using linear strain gauges was employed to calculate the vertical forces, draught forces and the profile impact forces. A new methodology was introduced to extract the absolute seeding depth from the combination of the determined surface profile and the measured 3D position of the seeds in absolute coordinates. Geo-referenced coordinates of seed positions in combination with geo-referenced surface profile and machine dynamics parameters, offered the possibility to define the reason of seeding depth variation. To do that, the relation between the forces (i.e. vertical and profile impact forces) and the variation of seeding depth was defined by correlating the spatial frequency contents of each dataset. An investigation of the seeder dynamics was carried out by modelling and simulating its performance based on measured data (e.g. determined surface profile and vertical forces) to define a system that can reduce the effect of the forces for better seed placement in no-till seeding. The seeding assembly together with and without a MR (magnetorheological) damper system, which was considered to be located in-between the coulter and the packer wheel, was introduced as a semi-active and passive system. Furthermore, three hysteresis models, such as Bingham, Dahl and Bounc-Wen model, were applied for the semi-active MR damper system behaviour. Among the models, the Bouc-Wen model demonstrated more significant improvements over the passive system model. Analysis of the performance of the semi-active MR damper implemented seeding assembly against the passive system proved the vertical motion dynamics of the assembly, in terms of vertical displacements (52.3%) and its affecting forces (54.1%) to be optimised for better seed placement. Testing the performance of the MR damper implemented seeding assembly compared with that of the original seeding assembly confirmed the potential of the MR damper implemented seeding assembly. The dynamics of the seeding assembly with the MR damper depicted a reduction of 67.69% in the amplitude of the impact forces compared to the original seeding assembly. Consequently, the improvement in the dynamics resulted in better seed placement. The variation of the damped seeding depth, as it was the performance of the seeding assembly with the MR damper, compared to the target seeding depth resulted in an absolute error of 11.9 mm for 95% of its samples, which is considerably less than the error with a value of 21.3 mm for the seeding depth variation resulted from the original seeding assembly. By designing the seeding assembly with the MR damper system, the dynamics of seeding machine can be significantly optimized for better seeding depth consistency.Das Erreichen einer gleichmäßigen Saattiefe ist bei der Direktsaat eine kritische Leistungsmetrik der Sämaschine und ist von großer Bedeutung für eine zuverlässige Keimung und ein gleichmäßiges Auflaufen des Saatgutes und der daraus resultierenden Ertragssteigerung. Die wachsende Implementierung von Nicht-Bodenbearbeitung in großen Betrieben erfordert Hochleistungs-Sämaschinen mit erhöhter Arbeitsgeschwindigkeit und großer Arbeitsbreite. So sorgen die erhöhte Kapazität der Sämaschine sowie harte Bodenbedingungen wie Oberflächenunebenheiten und das Vorhandensein von Ernterückständen dafür, dass die gewünschte Arbeitsqualität der Direktsaatmaschinen sowohl für die Konstrukteure als auch für die Hersteller eine Herausforderung darstellt. Das Ziel dieser kumulativen Dissertation war die Optimierung einer Direktsaat-Dynamik in Bezug auf die vertikale Bewegungsstabilität für eine verbesserte Saatgutplatzierung unter realistischen Bedingungen mit hoher Flächenleistung. Um dieses Ziel zu erreichen, wurde das gewünschte dynamischen Verhaltens der Sämaschine anhand von drei Phasen evaluiert: (1) Bewertung der dynamischen Leistung der Sämaschine durch definieren der Beziehung zwischen der Sämaschinendynamik und der entsprechenden Variation der Saattiefe, (2) Modellierung und Simulation der Bewegungsdynamik der Säaggregate zur Spezifizierung eines Steuersystems (z.B. MR-Dämpfersystem) zur Dynamikverbesserung, (3) Implementierung des definierten Systems in die Säaggregate und den Test des neuen Prototyps. Die vorliegende Arbeit war der erste Ansatz zur Optimierung des dynamischen Bewegungsverhaltens einer Direktsaatmaschine durch die Implementierung eines MR-Dämpfungssystems in ein Säaggregat für eine bessere Saatgutablage unter realistischen Arbeitsbedingungen mit hoher Kapazität. Die Direktsaatmaschine AMAZONE war ein idealer Kandidat für diese Untersuchung, da sie 12 identische Zinkenanbaugruppen enthält, bei denen die Arbeitstiefe durch die Position des Packerrades definiert wird. Unter Arbeitsbedingungen ist die maximale Breite 3 m, die sich aus dem Reihenabstand von 0,25 m zwischen den Säaggregaten ergibt. Die Säaggregate werden mit Hilfe eines Hydraulikzylinders mit Abtriebskräften versehen, um das Packerrad der Aggregate auf dem Boden zu halten und eine gleichbleibende Saattiefe während des Säbetriebs zu erhalten. Gleichzeitig erfasste und georeferenzierte Sensordaten ermöglichten die Erfassung der Dynamikparameter der Sämaschine und der entsprechenden Bodenoberflächenprofile (der Punkt, an dem das Packerrad den Boden berührt). Zusammen mit der gemessenen georeferenzierten 3D-Position der Samen ergab sich die Möglichkeit, die Ursachen für eine hohe Variation in der Saattiefe zu ermitteln. Es wurde ein mit modernster Sensortechnologie ausgestatteter Sensorrahmen entwickelt, um die Dynamik der Sämaschine zu erfassen und das entsprechende Bodenoberflächenprofil zu bestimmen. An drei bestimmten Punkten der Säaggregate wurde unter Verwendung von linearen Dehnungsmessstreifen Dehnungen aufgezeichnet, um die vertikalen Kräfte, Zugkräfte und die Profilaufprallkräfte zu berechnen. Eine neue Methodik wurde entwickelt, um die absolute Saattiefe aus der Kombination des ermittelten Oberflächenprofils und der gemessenen 3D-Position der Samen in absoluten Koordinaten zu extrahieren. Die georeferenzierten Koordinaten der Saatgutpositionen in Kombination mit georeferenzierten Oberflächenprofil- und Maschinendynamikparametern boten die Möglichkeit, die Ursache für die Variation der Saattiefe zu bestimmen. Um dies zu tun, wurde die Beziehung zwischen den Kräften (d.h. die vertikalen und Profilaufprallkräften) und der Variation der Saattiefe durch Korrelieren der räumlichen Frequenzinhalte eines jedes Datensatzes bestimmt. Eine Untersuchung der Sämaschinendynamik wurde durchgeführt, indem ihre Leistung basierend auf gemessenen Daten (z. B. bestimmtem Oberflächenprofil und vertikalen Kräften) modelliert und simuliert wurde, um ein System zu entwickeln, das den Einfluss der Kräfte auf die Samenplatzierung beim pfluglosen Säen verbessern kann. Das Säaggregat mit und ohne MR (magnetorheologisches) Dämpfersystem zwischen dem Säschar und dem Packerrad liegend, wurde als semiaktives und passives System eingeführt. Darüber hinaus wurden drei Hysteresemodelle wie das Bingham-, Dahl- und Bounc-Wen-Modell für das semiaktive MR-Dämpfersystemverhalten verwendet. Unter den Modellen zeigte das Bouc-Wen-Modell signifikantere Verbesserungen gegenüber dem passiven Systemmodell. Die Analyse der Leistungen der semiaktiven MR-Dämpfer-implementierten Impfanordnung gegenüber dem passiven System bewies, dass die vertikale Bewegungsdynamik in Bezug auf vertikale Fehlplatzierung des Samens (52,3%) und ihre beeinflussenden Kräfte (54,1%), um für besseres Saatgut optimiert zu werden Platzierung. Das Testen der Leistung der mit dem MR-Dämpfer implementierten Säanordnung im Vergleich zu der der ursprünglichen Säanordnung bestätigte das Potenzial der MR-Dämpfer-implementierten Säanordnung. Die Messung des Säaggregates mit dem MR-Dämpfer zeigte eine Reduzierung der Amplitude der Aufprallkräfte um 67,69% im Vergleich zur ursprünglichen Säeinheit. Folglich führte die Verbesserung der Dynamik zu einer besseren Saatgutplatzierung. Die Saattiefe, wie sie bei der Sämaschine mit dem MR-Dämpfer vorlag, wies im Vergleich zur Soll-Saattiefe bei 95% der Stichproben einen absoluten Fehler von 11,9 mm auf, der erheblich geringer ist als der absolute Fehler von 21,3 mm Saattiefe beim Vergleichsaggregat. Durch die Ausstattung der Sämaschine mit dem MR-Dämpfersystem kann die Ablagegenauigkeit in der Saattiefe signifikant optimiert werden

    Multinode Acoustic Systems for High Throughput Cellular Analysis

    Get PDF
    For decades, flow cytometry is used as the gold standard for cellular analyses as it measures multiple properties of single cells. Traditional flow cytometry uses the hydrodynamic focusing technique where the sheath fluid focuses cells in the sample into a narrow stream. Although such precise focusing provides accurate optical measurements, high sheath fluid pressure and high linear velocities limit analysis rate to 50,000 particles/s. Such rates are too low for detecting rare events where one cell may have to be detected in a population of about a billion cells. Therefore, it is necessary to eliminate the sheath fluid and improve throughput by several orders of magnitude by using a suitable alternate focusing mechanism that allows focusing cells in high volume samples into multiple focused streams. Toward this aim, this dissertation presents the multinode acoustic technique that uses high frequency ultrasonic waves to focus particles and cells into highly parallel focused streams. One challenge, however, is that acoustic attenuation is significant at high frequencies. Therefore, to optimize acoustic energy density within multinode acoustic flow cells, a simple model is derived based on exhaustive literature review, suggesting that attenuation may be minimized by proper choice of fabrication material. Using such acoustically transparent materials, multinode acoustic flow cells were fabricated by three approaches, which include using machined aluminum frame and glass slides, disposable rectangular glass capillaries and etched silicon flow cells fabricated using standard photolithography and deep reactive ion etching techniques. Among these, flexibility in design using microfabrication approach has allowed fabricating etched flow cells having multiple parallel channels. Such parallelization improves acoustic energy density within each channel and precisely focuses particles at volumetric throughput of few tens of mL/min. Finally, this dissertation presents a proof-of-concept flow cytometry instrumentation using laser line generation optics and microscopy image sensors for imaging parallel focused streams in multinode acoustic flow cells. High throughput and precise focusing suggest that multinode focusing is a suitable alternative to conventional hydrodynamics, and multinode acoustic flow cells integrated with such optical imaging systems incorporating real-time signal processing circuitry will provide throughput matching that required for the detection of circulating tumor cells

    Design of a novel punch planter capable of producing equidistant seed spacing of irregular shaped seeds

    Get PDF
    Plants uniformly spaced in the field have a more efficient use of resources, due to their even distribution. There are also a better ability to compete against weeds, less spread of disease and lodging. Consequently the yield should be improved. Precise seed placement and seed location in the field are important for the management of the crop at a plant-scale level, for such operations as mechanical weeding or herbicides applications. A novel concept of a precision drill was developed to achieve an advanced control of seed placement and location in the soil. The fundamental principle adopted, was to trap seeds inside holes in the soil, to eliminate seed bounce and roll in the furrow. The concept is simple and consists of only three moving parts, two punch wheels and a fen, to precisely place the seeds in the soil. A rotary punch planter prototype was designed and built, including a vacuum operated seed metering unit and an air delivery system. The prototype was tested under laboratory conditions to determine its performance in relation to seed placement, when planting wheat and pelleted sugar beet seeds. The experiments were done in a soil bin at 4, 6 and 8 km/h Seed spacing and depth were set to 18 cm and 3 cm, respectively. The results show that, once a seed had been successfully selected the prototype had the ability to precisely place seeds in the soil for wheat and sugar beet seeds, at all speeds tested. The grand mean for precision was 12.2%. The CP3 value for wheat and sugar beet at 8 km/h were 26.2 % and 60.8 %, respectively. The main problems encountered were seed selection at higher speeds, and incorrect seed transfers from the seed metering unit to the delivery punches, which occurred for both seeds at all speeds. The concept has proved to be effective and modifications of the seed metering mechanism to improve its performance is recommended to further improve upon the concept.Ph

    Control system response for seed placement accuracy on row crop planters

    Get PDF
    Doctor of PhilosophyDepartment of Biological & Agricultural EngineeringAjay ShardaPlanting is one of the most critical field operations that can highly influence early season vigor, final plant density and ultimately potential crop yield. It is the opportunity to place seeds at a uniform depth and spacing providing them the ideal environment for proper growth and development. However, inherent field spatial variability could influence seed placement and requires proper implementation of planter settings to prevent shallow seeding depth, sidewall compaction and uneven spacing. The overall goal of this research is to evaluate the response of the planter and crop to downforce control system implementation across a wide range of machine and field operating conditions. Planting operations were performed in corn production fields using a Horsch row-crop planter with 12 row units equipped with a hydraulic downforce system capable of implementing fixed and active downforce settings. A custom-made data acquisition system was developed to record sensor data at 10 Hz sampling frequency. From this study, the following conclusions were drawn. First, soil texture and soil compaction due to tractor tires influenced real-time gauge wheel load (GWL). Implementing a fixed downforce setting with target GWL set at 35 kg showed that 25% of the total planting time GWL was less than 0 suggesting areas planted with uncertain seeding depth due to potential loss of ground contact of the gauge wheels. Likewise, fewer row units per section could provide lower variability in GWL indicating the need for an automatic section control to maintain target GWL within an acceptable range for all row units. Second, implementing an active downforce setting showed no significant difference between downforce A (63 kg) and downforce B (100 kg) on plant spacing, although downforce setting B resulted to higher plant spacing accuracy. Higher variability in spacing was observed when ground speed is over 12 kph. To achieve desired seeding depth, downforce greater than 100 kg is needed when ground speed is over 7.2 kph on no-till field and when ground speed is over 12 kph on strip-tilled field. Third, response of row units segregated in sections revealed that row unit acceleration on wing, track and non-track sections increases with speed. Strip-tilled soil exhibited lower row unit acceleration by 18% compared to no-till soil. Finally, a proof-of-concept sensing and measurement (SAM) system was developed to calculate seed spacing, depth and geo-location of corn. This system could provide real-time feedback on seed spacing and depth allowing appropriate downforce control system management for more consistent seed placement during planting. In summary, advances in planter technology paved the way for the addition of more row units across on the planter to increase planting productivity. With increasing width of planter toolbar, each row unit may need different downforce control to varying field and machine operating conditions. Appropriate downforce control management should be implemented to compensate for increased dynamics of planter row units across a highly variable field conditions to achieve the desired seed placement accuracy

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Scientific drilling projects in ancient lakes: integrating geological and biological histories

    Get PDF
    Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information, e.g., through molecular dating of molecular phylogenies. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets for creating an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep drilling projects

    Modeling and validation of crop feeding in a large square baler

    Get PDF
    This study investigated the crop density in a New Holland BB960 (branch of CNH Global N.V.) large square baler as examined by crop trajectory from the precompression room to the bale chamber. This study also examined both the top and bottom plunger pressures and critical factors affecting the final top and bottom bale densities.The crop trajectories (wad of crop) were measured using a high-speed camera from the side of the baler through viewing windows. The viewing windows were divided into four regions for determining the crop displacement, velocity and acceleration. Crop strain was used to evaluate the potential change in density of the crop before being compressed by the plunger. Generally, the vertical crop strain was found to be higher in the top half of the bale compared to the bottom. Average strain values for side measurements were 12.8% for the top and 2.1% for the bottom. Plunger pressures were measured to compare peak pressures between the top and bottom halves of each compressed wad of crop, and to develop pressure profiles based on the plunger’s position. Results of comparing the mean peak plunger pressures between the top and bottom locations indicated the mean pressures were significantly higher at the top location with the exception of one particular setting. Resulting pressure profile graphs aided in qualitatively describing the compression process for both top and bottom locations.A stepwise regression model was developed to examine the difference in material quantity in the top half of the bale compared to the bottom, based on bale weights. The model indicated that flake setting, stuffer ratio and number of flakes had the greatest effect on maintaining consistent bale density by comparing top to bottom halves of each bale. The R2 (coefficient of determination) value for the developed model was of 59.9%. The R2 was low although could be accounted for due to the limited number of data points in the developed model

    Ultrasound in Characterization of Rocks and Ceramics and in Crystallization Control

    Get PDF
    Deep continental drilling is a fundamental tool for obtaining detailed information about the composition, structure and physical conditions of the Earth’s crust. A drill hole allows direct access to rock under in situ conditions and retrieval of core samples that can be investigated in laboratory. In order to get reliable estimates for geophysical properties of rock samples, the seismic velocity measurements should be performed under pressure. An apparatus was built that could be used to determine ultrasonic (1 MHz) longitudinal and shear wave velocities (Vp and Vs) in rock samples under uniaxial compression that resembles conditions in the crust down to 11 km depth. Rock samples from Outokumpu deep drill hole (2516 m) were analyzed to characterize the geophysical nature of the Precambrian crustal section in Eastern Finland. Velocities varied according to the mineral composition, lithology, porosity and microcracks. The core velocities increased with increasing pressure due to microcrack closure. The results agreed with the down-core direction velocities of samples from the same core section measured under triaxial compression using a multi-anvil apparatus to some extent. The obtained geophysical parameters can be used to refine the interpretation of the seismic reflection survey data, such as the data from Finnish Reflection Experiment (FIRE) project. One of the FIRE survey lines crossed the Outokumpu area. The stress field in Fennoscandian crust consists of the weight of the overburden (26 MPa/km) and from a horizontal stress state arising from the Mid-Atlantic ridge push. The vertical stress exceeds the horizontal stresses at ~1 km depth. The crust exhibits velocity anisotropy that is strongly related to foliation and, in the case of retrieved core samples, to oriented microcracks. Because of seismic velocity anisotropy and the crustal stress-field, velocities should be measured in three dimensions under controlled tri-axial pressure, which is difficult with uniaxial apparatus. A multi-anvil apparatus was built to measure Vp and Vs (0° and 90° polarization) in three orthogonal directions of cube shaped samples under triaxial compression. Samples from the FIRE survey line were measured with the apparatus. Ultrasonic velocity measurements were also used to determine the porosity of custom-made ceramic samples. At 4-33% porosity the velocity decreased linearly with increasing porosity for both Vp and Vs. Material crystallinity is often a required property of the intermediate or end product in pharmaceutical manufacturing. Material can exhibit more than one crystal structure i.e. polymorph. While chemically identical the different lattice structure of an active pharmaceutical ingredient (API) results in different physicochemical properties. Polymorphism can significantly affect properties such as bioavailability, solubility and dissolution rate. These properties are also affected by the particle size, which is highlighted in case of nanoparticles. Besides using ultrasound to measure material properties, ultrasound was used in semi-batch crystallizer to initiate nucleation and control polymorphism and size of L-glutamic acid. Ultrasound-initiated nucleation produced pure (> 99.5 wt%) α-polymorph in controlled supersaturation conditions and reduced the particle size.Syväkairauksella saadaan tietoa maankuoren koostumuksesta, rakenteesta ja vallitsevista fysikaalisista olosuhteista. Syväreiästä voidaan kerätä kairanäytteitä, joiden mekaanisia ominaisuuksia voidaan tutkia ultraäänellä. Seismisten äännenopeuksien luotettava määrittäminen vaatii mittausten tekemistä paineen alla. Tutkimusta varten rakennettiin laite, jota käytettiin ultraäänen (1 MHz) pitkittäisen ja poikittaisen etenemisnopeuden (Vp ja Vs) määrittämiseksi kivinäytteissä yksiakselisen puristuksen aikana, joka vastasi maankuoren olosuhteita jopa 11 km:n syvyydessä. Outokummun syväreiästä (2516 m) kerättyjä kairanäytteitä analysoitiin maankuoren geofysikaalisten ominaisuuksien selvittämiseksi. Nopeudet vaihtelivat mineraalikoostumuksen, litologian, huokoisuuden ja mikrohalkeamien mukaan. Äänen nopeudet kasvoivat paineen kasvaessa mikrohalkeamien sulkeutumisen vuoksi. Sylinterin mallisista kivinäytteistä määritettyjä nopeuksia verrattiin muualla mitattuihin, samasta syväreiän osasta oleviin kuution muotoisiin näytteisiin. Nämä oli mitattu laitteessa, jossa nopeusmittaus ja puristus tapahtuivat kolmessa kohtisuorassa suunnassa. Verrattaessa tuloksia, paras vastaavuus havaittiin kairaussuunnassa. Saatujen geofysikaalisten parametrien avulla voidaan parantaa syväseismisten luotausten tulkintaa. Yksi heijastusseismisen luotaushanke FIRE:n (Finnish Reflection Experiment) luotauslinja kulki Outokummun alueella. Maankuoren jännitystila koostuu vaaka- ja pystysuuntaisista komponenteista. Kiven liuskeisuus ja suuntautuneet mikrohalkeamat aiheuttavat seismisen nopeuden anisotropiaa. Seismisen nopeuden anisotropian ja maankuoren jännityskentän vuoksi nopeudet tulisi määrittää kolmeen suuntaan näiden mukaisen puristuksen aikana. Tätä varten rakennettiin laite, jolla voitiin mitata Vp ja Vs (0 ° ja 90 ° polarisaatio) kuution muotoisista näytteistä. Sillä mitattiin FIRE-mittauslinjalta kerättyjä näytteitä. Ultraääninopeusmittauksia käytettiin myös keraamisten näytteiden huokoisuuden määrittämiseen. Huokoisuuden ollessa 4-33% ultraäänen pitkittäinen ja poikittainen etenemisnopeus pieneni lineaarisesti huokoisuuden kasvaessa. Lääkevalmisteiden ainesosien tulee usein olla kiteisiä. Saman aineen eri kiderakenteilla eli polymorfeilla on erilaiset ominaisuudet, kuten biologinen hyötyosuus, liukoisuus ja liukenemisnopeus. Näihin ominaisuuksiin vaikuttaa myös hiukkaskoko, joka korostuu nanohiukkasten tapauksessa. Sen lisäksi, että ultraääntä käytettiin materiaalien ominaisuuksien mittaamiseen, sitä käytettiin ohjaamaan L-glutamiinihapon kiteytymistä hallituissa ylikylläisyys olosuhteissa. Ultraäänellä käynnistetty kiteytys tuotti puhdasta (> 99,5 painoprosenttia) α-polymorfia ja pienensi hiukkaskokoa
    • …
    corecore