51,732 research outputs found

    Sedimentology and fluvial styles of the uppermost Cretaceous continental deposits of the Austral-Magallanes Basin, Patagonia, Argentina

    Get PDF
    The sedimentary infill of the Austral-Magallanes Basin since the onset of its foreland stage in the Lago Argentino region is dominated by deep-marine and coastal deposits. However, during the Late Cretaceous the basin accumulated a thick and poorly known continental sedimentary succession, which has received different lithostratigraphic names. The aim of this work is to characterize the here defined Uppermost Cretaceous Continental Deposits (UCCD) from a detailed facies and architectural analysis, as well as the resulting stacking pattern. Seven Facies Associations (FAs) were discriminated in order to define the sedimentary paleoenvironments: FA1, gravelly sheet bodies; FA2, tabular bodies of conglomerates with mud rip-up clasts; FA3, complex tabular sandy bodies; FA4, simple tabular sandy bodies; FA5, tabular bodies of structureless sandstones; FA6, heterolithic deposits; and FA7, fine-grained deposits. Three different fluvial styles were recognized: meandering systems dominated by avulsion and meander abandonment processes (fluvial style a), braided systems (fluvial style b), and meandering systems dominated by overbank flood processes (fluvial style c). The stacking pattern of the FAs allowed to divide the UCCD into two major depositional stages related to the accommodation space vs sediment supply (A/S) ratio. Stage I is characterized by the alternation of fluvial styles a and b, while the Stage II is represented by the alternation of fluvial styles c and b, and the Stage III is characterized entirely by fluvial style c deposits. Although the UCCD are considered as a whole within a framework of low A/S ratio, several high frequency variations were recognized. The Stage I records seven high frequency intervals of which four are characterized by high A/S ratio interrupted by three events of low A/S. While the stage II is represented by six high frequency periods of low A/S ratio and other five high frequency events of high A/S ratio. The Stage II is considered as deposited in a relative higher A/S context in comparison with the Stage I, based on the behavior of the moderate to high sinuosity meander fluvial systems. Finally, the Stage III is represented entirely by a high frequency low A/S ratio event.Fil: Tettamanti, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: Moyano Paz, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Varela, Augusto Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. YPF - Tecnología; ArgentinaFil: Tineo, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Gómez Peral, Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Poire, Daniel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Cereceda, Abril. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: Odino Barreto, Andrea Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentin

    Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions

    Get PDF
    Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics

    Sedimentology and kinematics of a large, retrogressive growth-fault system in Upper Carboniferous deltaic sediments, western Ireland

    Get PDF
    Growth faulting is a common feature of many deltaic environments and is vital in determining local sediment dispersal and accumulation, and hence in controlling the resultant sedimentary facies distribution and architecture. Growth faults occur on a range of scales, from a few centimetres to hundreds of metres, with the largest growth faults frequently being under-represented in outcrops that are often smaller than the scale of feature under investigation. This paper presents data from the exceptionally large outcrops of the Cliffs of Moher, western Ireland, where a growth-fault complex affects strata up to 60 m in thickness and extends laterally for 3 km. Study of this Namurian (Upper Carboniferous) growth-fault system enables the relationship between growth faulting and sedimentation to be detailed and permits reconstruction of the kinematic history of faulting. Growth faulting was initiated with the onset of sandstone deposition on a succession of silty mudstones that overlie a thin, marine shale. The decollement horizon developed at the top of the marine shale contact for the first nine faults, by which time aggradation in the hangingwall exceeded 60 m in thickness. After this time, failure planes developed at higher stratigraphic levels and were associated with smaller scale faults. The fault complex shows a dominantly landward retrogressive movement, in which only one fault was largely active at any one time. There is no evidence of compressional features at the base of the growth faults, thus suggesting open-ended slides, and the faults display both disintegrative and non-disintegrative structure. Thin-bedded, distal mouth bar facies dominate the hangingwall stratigraphy and, in the final stages of growth-fault movement, erosion of the crests of rollover structures resulted in the highest strata being restricted to the proximity of the fault. These upper erosion surfaces on the fault scarp developed erosive chutes that were cut parallel to flow and are downlapped by the distal hangingwall strata of younger growth faults

    Depositional processes and stratigraphic evolution of the Campanian deltaic system of La Anita Formation, Austral-Magallanes Basin, Patagonia, Argentina

    Get PDF
    Coastal depositional systems are commonly classified in terms of the relative interaction of wave, tide and fluvial processes. The La Anita Formation represents the opportunity to study and better understand coastal sedimentary systems. It is a poorly studied prograding siliciclastic deltaic-coastal wedge accumulated in the Campanian during the foreland stage of the Austral-Magallanes Basin. A detailed depositional process-based facies analysis have allowed the definition of 13 sedimentary facies and 9 facies associations for the La Anita Formation, ranging from prodelta to interdistributary delta-channel deposits. According to the spatial distribution of these facies associations, the La Anita Formation was divided into two informal units bounded by a regional erosion surface. The lower unit shows abundant hummocky cross-bedded and bioturbated sandstones, coarseningupward trends and mainly aggradational to progradational vertical stacking pattern, and it was interpreted as a wave-dominated fluvial-influenced delta. The upper unit is characterized by unidirectional dune cross-bedding, coarseningupward trend and a progradational vertical stacking pattern, and was interpreted as a fluvio-dominated delta with no evidence of tide or wave influence. These two units represent two genetically unrelated depositional sequences bounded by a regional erosion surface, which is interpreted as a sequence boundary triggered by a relative sea-level fall. The lower unit is part of a progradational highstand systems tract which involves the underlying deep-marine Alta Vista Formation. The upper unit deposits reflect a complete relative sea-level cycle which includes an undifferentiated lowstand and transgressive systems tracts and, toward the top, highstand systems tract.Fil: Moyano Paz, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Tettamanti, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Varela, Augusto Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Cereceda, Abril. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Poire, Daniel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentin

    Coupled ‘storm-flood’ depositional model: application to the Miocene–Modern Baram Delta Province, north-west Borneo

    Get PDF
    The Miocene to Modern Baram Delta Province is a highly efficient source to sink system that has accumulated 9 to 12 km of coastal-deltaic to shelf sediments over the past 15 Myr. Facies analysis based on ca 1 km of total vertical outcrop stratigraphy, combined with subsurface geology and sedimentary processes in the present-day Baram Delta Province, suggests a ‘storm-flood’ depositional model comprising two distinct periods: (i) fair-weather periods are dominated by alongshore sediment reworking and coastal sand accumulation; and (ii) monsoon-driven storm periods are characterised by increased wave energy and offshore-directed downwelling storm flow that occur simultaneously with peak fluvial discharge caused by storm-precipitation (‘storm-floods’). The modern equivalent environment has the following characteristics: (i) humid-tropical monsoonal climate; (ii) narrow (ca <100 km) and steep (ca 1°), densely vegetated, coastal plain; (iii) deep tropical weathering of a mudstone-dominated hinterland; (iv) multiple independent, small to moderate-sized (102 to 105 km2) drainage basins; (v) predominance of river-mouth bypassing; and (vi) supply-dominated shelf. The ancient, proximal part of this system (the onshore Belait Formation) is dominated by strongly cyclical sandier-upward successions (metre to decametre-scale) comprising (from bottom to top): (i) finely laminated mudstone with millimetre-scale silty laminae; (ii) heterolithic sandstone-mudstone alternations (centimetre to metre-scale); and (iii) sharp-based, swaley cross-stratified sandstone beds and bedsets (metre to decimetre-scale). Gutter casts (decimetre to metre-scale) are widespread, they are filled with swaley cross-stratified sandstone and their long-axes are oriented perpendicular to the palaeo-shoreline. The gutter casts and other associated waning-flow event beds suggest that erosion and deposition was controlled by high-energy, offshore-directed, oscillatory-dominated, sediment-laden combined flows within a shoreface to delta front setting. The presence of multiple river mouths and exceptionally high rates of accommodation creation (characteristic of the Neogene to Recent Baram Delta Province; up to 3000 m/Ma), in a ‘storm-flood’ dominated environment, resulted in a highly efficient and effective offshore-directed sediment transport system

    Moving boulders in flash floods and estimating flow conditions using boulders in ancient deposits

    Get PDF
    Boulders moving in flash floods cause considerable damage and casualties. More and bigger boulders move in flash floods than predicted from published theory. The interpretation of flow conditions from the size of large particles within flash flood deposits has, until now, generally assumed that the velocity (or discharge) is unchanging in time (i.e. flow is steady), or changes instantaneously between periods of constant conditions. Standard practice is to apply theories developed for steady flow conditions to flash floods, which are however inherently very unsteady flows. This is likely to lead to overestimates of peak flow velocity (or discharge). Flash floods are characterised by extremely rapid variations in flow that generate significant transient forces in addition to the mean-flow drag. These transient forces, generated by rapid velocity changes, are generally ignored in published theories, but they are briefly so large that they could initiate the motion of boulders. This paper develops a theory for the initiation of boulder movement due to the additional impulsive force generated by unsteady flow, and discusses the implications. Keywords

    Morphology and Formation of Glassy Volcanic Ash from the August 12-15, 1991 Eruption of Hudson Volcano, Chile

    Get PDF
    The 1991 explosive eruption of Hudson volcano in Chile ejected about 2.7 km3 (DRE) of basalt and trachyandesite magma as tephra fall. A majority of the fallout occurred from an eruption during the period August 12-15, 1991, producing an extensive deposit to the east of the volcano in Chile and Argentina. Dacitic, glassy tephra from this phase of the eruption exhibit a remarkable variety in particle morphology and color, ranging from dark, poorly-vesicular shards to light-colored, pipe-vesicular micropumice. Fractal analysis of glassy particle outlines shows that at least four distinct types can be discriminated: blocky, poorly-vesicular, highly vesicular with spherical vesicles, and pipe vesicular. A quantitative comparison of particle morphologies using principal component analysis of fractal spectrums of the Hudson tephra with other tephra produced by eruptions with known fragmentation mechanisms, together with SEM imaging of particle surfaces, indicates that production of the Hudson tephra involved both interaction with external water and exsolution of dissolved volatiles. Blocky particles likely represent magma that was fragmented by magma-water interactions before exsolution of all dissolved volatiles could occur. The great diversity of particle types in the August 12-15, 1991 Hudson tephra fall can be attributed to eruption of volatile-rich trachyandesite magma through an ice-filled caldera where subglacial melting led to a supply of external water that interacted intermittently with the discharge of magma driven primarily by volatile exsolution.La erupción explosiva de 1991 del Volcán Hudson en Chile expulsó cerca de 2,7 km3 (DRE) de magma traquiandesítico y basáltico en forma de caída de tefra. La mayoría de la caída se produjo durante el período del 12 al 15 de agosto de 1991, a partir de una erupción que produjo un extenso depósito hacia el este del volcán, en Chile y en Argentina. Para esta fase de la erupción, la fracción vítrea correspondiente a la tefra traquiandesítica muestra composición dacítica, con fragmentos de forma y color muy variados, que fluctúan desde trizas oscuras y poco vesiculadas hasta fragmentos pumíceos de color claro e intensa vesiculación de canalículos. El análisis fractal del contorno de las partículas vítreas permite la separación en por lo menos cuatro tipos distintos: blocosas, poco vesiculadas, altamente vesiculadas con vesículas esféricas y canalículo-vesiculadas. El análisis cuantitativo de las formas de las partículas, mediante el análisis de componentes principales de los espectros fractales de las partículas de la tefra del Hudson, y su comparación con los de otras tefras producidas por erupciones cuyos mecanismos de fragmentación son conocidos, junto con las imágenes de microscopio electrónico de barrido de la superficies de las partículas, indica que la producción de tefra del Hudson es resultado de un proceso mixto que comprende la interacción del magma con agua externa y la exsolución de los volátiles disueltos en el magma. Las partículas blocosas probablemente representan magma fragmentado por interacción con agua antes de que tuviera lugar la exsolución de todos los volátiles disueltos. La gran variedad de partículas en la caída de cenizas de la erupción del 12 al 15 de agosto de 1991 del volcán Hudson puede atribuirse a la erupción de un magma traquiandesítico rico en volátiles a través de una caldera rellena de hielo, en la cual la fusión de la base del relleno de hielo aportó agua externa al sistema magmático, que interactuó intermitentemente con la descarga de magma impulsada por la exsolución de volátiles.Fil: Scasso, Roberto Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Carey, Steven. University of Rhode Island; Estados Unido

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    London’s foundations protecting the geodiversity of the capital

    Get PDF
    This report describes a geodiversity audit of London commissioned by a partnership led by the Greater London Authority (GLA), which includes the British Geological Survey (BGS), Natural England, Government Office for London, London Biodiversity Partnership, London Borough of Lambeth, Harrow and Hillingdon Geological Society, South London London RIGS Groups, Hanson UK and Queen Mary College, University of London. The project was funded by an Aggregates Levy Sustainability Fund grant from Natural England plus additional support from the GLA, BGS and Natural England London Region. The audit began with a review of the available geodiversity documentation for London including: BGS field maps, databases and publications; Regional Important Geological Sites (RIGS) Group information; Natural England Sites of Special Scientific Interest (SSSI) and Geological Conservation Review (GCR) documentation; and documentation and data from the GLA and London Boroughs. An initial list of around 470 sites with potential for geodiversity value was compiled from this information. This list was then narrowed down to 100 for further assessment by exporting site locations to a GIS and cross-checking against digital aerial photography backed up by BGS staff local geological expertise. Using the procedure set out in this report field auditing was carried out by BGS staff and the South London RIGS Group between November 2007 and April 2008. From the list of 100 sites, 35 sites were found to be suitable for detailed auditing. Harrow and Hillingdon Geological Society audited a further site in November 2008, bringing the total to 36 sites. Using the criteria set out in this report 14 of the 36 sites are recommended for designation as Regionally Important Geological/geomorphological Sites (RIGS) in borough Local Development Documents. Of the 33 London boroughs, RIGS are recommended in eight, with five in Bromley, three in Croydon and one each in Lewisham, Ealing, Greenwich, Harrow, Hillingdon and Bexley. Using the criteria set out in this report 15 of the 36 sites have the potential to be designated as Locally Important Geological Sites (LIGS). These sites are located in nine boroughs, three in Waltham Forest, two in Bromley, two in Islington and one each in Barnet, Lewisham, Redbridge, Wandsworth, Southwark and Sutton. Planning proposals should have regard to geodiversity in order to implement strategic and local policies. Sites should be protected, managed and enhanced and, where ppropriate, new development should provide improvements to the geodiversity value of a site. This can include measures that promote public access, study, interpretation and appreciation of geodiversity. In addition to individual sites of geodiversity interest, Greater London has distinctive natural landscapes shaped by geological processes, such as undulating chalk downlands with dry valleys in south London, and river terraces forming long flat areas separated by steeper areas of terrace front slopes. This natural topographic geodiversity underlying London should be understood, respected and only altered in that knowledge with full knowledge of it origin and form. Planners are encouraged to use authentic contouring in restoration work and new landscaping schemes, maintain the contributions of natural topography, rock outcrops, landscape features, and to maintain soil quality, quantity and function
    corecore