235,969 research outputs found

    Evolution and overview of Linked USDL

    Get PDF
    For more than 10 years, research on service descriptions has mainly studied software-based services and provided languages such as WSDL, OWL-S, WSMO for SOAP, and hREST for REST. Nonetheless, recent developments from service management (e.g., ITIL and COBIT) and cloud computing (e.g. Software-as-a-Service) have brought new re- quirements to service descriptions languages: the need to also model business services and account for the multi-faceted nature of services. Business-orientation, co-creation, pricing, legal aspects, and security issues are all elements which must also be part of service descriptions. While ontologies such as e service and e value provided a first modeling attempt to capture a business perspective, concerns on how to contract services and the agreements entailed by a contract also need to be taken into account. This has for the most part been disregarded by the e family of ontologies. In this paper, we review the evolution and provide an overview of Linked USDL, a comprehensive language which provides a (multi-faceted) description to enable the commercialization of (business and technical) services over the web

    Web services robustness testing

    Get PDF
    Web services are a new paradigm for building software applications that has many advantages over the previous paradigms; however, Web Services are still not widely used because Service Requesters do not trust services that were built by others. Testing can assuage this problem because it can be used to assess the quality attributes of Web Services. This thesis proposes a framework and presents a proof of concept tool that can be used to test the robustness and other related attributes of a Web Service. The tool can be easily enhanced to assess other quality attributes. The framework is based on analyzing Web Services Description Language (WSDL) documents of Web Services to find what faults could affect the robustness quality attributes. After that using these faults to build test case generation rules to assess the robustness quality attribute of Web Services. This framework will give a better understanding of the faults that may affect the robustness quality attribute of Web Services, how these faults are related to the interface or the contract of a Web Service under test, and what testing techniques can be used to detect such faults. The approach used in this thesis for building test cases for Web Services was used with many examples in order to demonstrate its effectiveness; these examples have shown that the approach and the proof of concept tool are able to assess the robustness of Web Services implementation and Web Services platforms. Four hundred and two test clients were automatically built by the tool, based on the test cases rules, to assess the robustness of these Web Services examples. These test clients detected eleven robustness failures in the Web Services implementations and nine robustness failures in the Web Services platforms. Also the approach was able to help in comparing the robustness of two different Web Services platforms, namely Axis and GLUE. After deploying the same Web Services in both of these platforms; Axis showed less robustness and security failures than GLUE

    PolyOrBAC: a security framework for critical infrastructures

    Get PDF
    International audienceDue to physical and logical vulnerabilities, a critical infrastructure (CI) can encounter failures of various degrees of severity, and since there are many interdependencies between CIs, simple failures can have dramatic consequences on the users. In this paper, we mainly focus on malicious threats that might affect the information and communication system that controls the Critical Infrastructure, i.e., the Critical Information Infrastructure (CII). To address the security challenges that are specific of CIIs, we propose a collaborative access control framework called PolyOrBAC. This approach offers each organization taking part in the CII the capacity of collaborating with the other ones, while maintaining a control on its resources and on its internal security policy. The interactions between organizations participating in the CII are implemented through web services (WS), and for each WS a contract is signed between the service-provider organization and the service-user organization. The contract describes the WS functions and parameters, the liability of each party and the security rules controlling the interactions. At runtime, the compliance of all interactions with these security rules is checked. Every deviation from the signed contracts triggers an alarm, the concerned parties are notified and audits can be used as evidence for sanctioning the party responsible for the deviation. Our approach is illustrated by a practical scenario, based on real emergency actions in an electric power grid infrastructure, and a simulation test bed has been implemented to animate this scenario and experiment with its security issues

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    Privacy and Cloud Computing in Public Schools

    Get PDF
    Today, data driven decision-making is at the center of educational policy debates in the United States. School districts are increasingly turning to rapidly evolving technologies and cloud computing to satisfy their educational objectives and take advantage of new opportunities for cost savings, flexibility, and always-available service among others. As public schools in the United States rapidly adopt cloud-computing services, and consequently transfer increasing quantities of student information to third-party providers, privacy issues become more salient and contentious. The protection of student privacy in the context of cloud computing is generally unknown both to the public and to policy-makers. This study thus focuses on K-12 public education and examines how school districts address privacy when they transfer student information to cloud computing service providers. The goals of the study are threefold: first, to provide a national picture of cloud computing in public schools; second, to assess how public schools address their statutory obligations as well as generally accepted privacy principles in their cloud service agreements; and, third, to make recommendations based on the findings to improve the protection of student privacy in the context of cloud computing. Fordham CLIP selected a national sample of school districts including large, medium and small school systems from every geographic region of the country. Using state open public record laws, Fordham CLIP requested from each selected district all of the district’s cloud service agreements, notices to parents, and computer use policies for teachers. All of the materials were then coded against a checklist of legal obligations and privacy norms. The purpose for this coding was to enable a general assessment and was not designed to provide a compliance audit of any school district nor of any particular vendor.https://ir.lawnet.fordham.edu/clip/1001/thumbnail.jp

    Privacy and Cloud Computing in Public Schools

    Get PDF
    Today, data driven decision-making is at the center of educational policy debates in the United States. School districts are increasingly turning to rapidly evolving technologies and cloud computing to satisfy their educational objectives and take advantage of new opportunities for cost savings, flexibility, and always-available service among others. As public schools in the United States rapidly adopt cloud-computing services, and consequently transfer increasing quantities of student information to third-party providers, privacy issues become more salient and contentious. The protection of student privacy in the context of cloud computing is generally unknown both to the public and to policy-makers. This study thus focuses on K-12 public education and examines how school districts address privacy when they transfer student information to cloud computing service providers. The goals of the study are threefold: first, to provide a national picture of cloud computing in public schools; second, to assess how public schools address their statutory obligations as well as generally accepted privacy principles in their cloud service agreements; and, third, to make recommendations based on the findings to improve the protection of student privacy in the context of cloud computing. Fordham CLIP selected a national sample of school districts including large, medium and small school systems from every geographic region of the country. Using state open public record laws, Fordham CLIP requested from each selected district all of the district’s cloud service agreements, notices to parents, and computer use policies for teachers. All of the materials were then coded against a checklist of legal obligations and privacy norms. The purpose for this coding was to enable a general assessment and was not designed to provide a compliance audit of any school district nor of any particular vendor.https://ir.lawnet.fordham.edu/clip/1001/thumbnail.jp

    Privacy and Cloud Computing in Public Schools

    Get PDF
    Today, data driven decision-making is at the center of educational policy debates in the United States. School districts are increasingly turning to rapidly evolving technologies and cloud computing to satisfy their educational objectives and take advantage of new opportunities for cost savings, flexibility, and always-available service among others. As public schools in the United States rapidly adopt cloud-computing services, and consequently transfer increasing quantities of student information to third-party providers, privacy issues become more salient and contentious. The protection of student privacy in the context of cloud computing is generally unknown both to the public and to policy-makers. This study thus focuses on K-12 public education and examines how school districts address privacy when they transfer student information to cloud computing service providers. The goals of the study are threefold: first, to provide a national picture of cloud computing in public schools; second, to assess how public schools address their statutory obligations as well as generally accepted privacy principles in their cloud service agreements; and, third, to make recommendations based on the findings to improve the protection of student privacy in the context of cloud computing. Fordham CLIP selected a national sample of school districts including large, medium and small school systems from every geographic region of the country. Using state open public record laws, Fordham CLIP requested from each selected district all of the district’s cloud service agreements, notices to parents, and computer use policies for teachers. All of the materials were then coded against a checklist of legal obligations and privacy norms. The purpose for this coding was to enable a general assessment and was not designed to provide a compliance audit of any school district nor of any particular vendor.https://ir.lawnet.fordham.edu/clip/1001/thumbnail.jp
    • 

    corecore