10 research outputs found

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    User-Pair Selection in Multiuser Cooperative Networks With an Untrusted Relay

    Get PDF
    This paper investigates the physical-layer security of an amplify-and-forward wireless cooperative network, where N source nodes communicate with their corresponding destination nodes under the help of an untrusted relay. In each slot, only one user-pair is scheduled to transmit the information, and the destination-aided cooperative jamming is adopted to protect information from being intercepted by the untrusted relay. Three user-pair selection schemes have been proposed for the considered system, namely opportunistic user-pair selection (OUS) scheme, greedy user-pair selection (GUS) scheme, and genie-aided user-pair selection scheme. Both the secrecy outage probability and the average secrecy rate have been studied to evaluate the performance of the OUS and GUS schemes, and the asymptotic analysis has also been obtained. It reveals that the proposed schemes can improve the secrecy performance for the cooperative multiuser networks as the number of user-pairs increases. We also prove that the achievable diversity order of both OUS and GUS schemes is N/2 . Finally, numerical and simulation results are presented to validate the accuracy of the developed analytical results

    Characterisation and performance analysis of random linear network coding for reliable and secure communication

    Get PDF
    In this thesis, we develop theoretical frameworks to characterize the performance of Random Linear Network Coding (RLNC), and propose novel communication schemes for the achievement of both reliability and security in wireless networks. In particular, (i) we present an analytical model to evaluate the performance of practical RLNC schemes suitable for low-complexity receivers, prioritized (i.e., layered) coding and multi-hop communications, (ii) investigate the performance of RLNC in relay assisted networks and propose a new cross-layer RLNC-aided cooperative scheme for reliable communication, (iii) characterize the secrecy feature of RLNC and propose a new physical-application layer security technique for the purpose of achieving security and reliability in multi-hope communications. At first, we investigate random block matrices and derive mathematical expressions for the enumeration of full-rank matrices that contain blocks of random entries arranged in a diagonal, lower-triangular or tri-diagonal structure. The derived expressions are then used to model the probability that a receiver will successfully decode a source message or layers of a service, when RLNC based on non-overlapping, expanding or sliding generations is employed. Moreover, the design parameters of these schemes allow to adjust the desired decoding performance. Next, we evaluate the performance of Random Linear Network Coded Cooperation (RLNCC) in relay assisted networks, and propose a cross-layer cooperative scheme which combines the emerging Non-Orthogonal Multiple Access (NOMA) technique and RLNCC. In this regard, we first consider the multiple-access relay channel in a setting where two source nodes transmit packets to a destination node, both directly and via a relay node. Secondly, we consider a multi-source multi-relay network, in which relay nodes employ RLNC on source packets and generate coded packets. For each network, we build our analysis on fundamental probability expressions for random matrices over finite fields and we derive theoretical expressions of the probability that the destination node will successfully decode the source packets. Finally, we consider a multi-relay network comprising of two groups of source nodes, where each group transmits packets to its own designated destination node over single-hop links and via a cluster of relay nodes shared by both groups. In an effort to boost reliability without sacrificing throughput, a scheme is proposed whereby packets at the relay nodes are combined using two methods; packets delivered by different groups are mixed using non-orthogonal multiple access principles, while packets originating from the same group are mixed using RLNC. An analytical framework that characterizes the performance of the proposed scheme is developed, and benchmarked against a counterpart scheme that is based on orthogonal multiple access. Finally, we quantify and characterize the intrinsic security feature of RLNC and design a joint physical-application layer security technique. For this purpose, we first consider a network comprising a transmitter, which employs RLNC to encode a message, a legitimate receiver, and a passive eavesdropper. Closed-form analytical expressions are derived to evaluate the intercept probability of RLNC, and a resource allocation model is presented to further minimize the intercept probability. Afterward, we propose a joint RLNC and opportunistic relaying scheme in a multi relay network to transmit confi- dential data to a destination in the presence of an eavesdropper. Four relay selection protocols are studied covering a range of network capabilities, such as the availability of the eavesdropper’s channel state information or the possibility to pair the selected relay with a jammer node that intentionally generates interference. For each case, expressions of the probability that a coded packet will not be decoded by a receiver, which can be either the destination or the eavesdropper, are derived. Based on those expressions, a framework is developed that characterizes the probability of the eavesdropper intercepting a sufficient number of coded packets and partially or fully decoding the confidential data. We observe that the field size over which RLNC is performed at the application layer as well as the adopted modulation and coding scheme at the physical layer can be modified to fine-tune the trade-off between security and reliability

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    Design and Analysis of Security Schemes for Low-cost RFID Systems

    Get PDF
    With the remarkable progress in microelectronics and low-power semiconductor technologies, Radio Frequency IDentification technology (RFID) has moved from obscurity into mainstream applications, which essentially provides an indispensable foundation to realize ubiquitous computing and machine perception. However, the catching and exclusive characteristics of RFID systems introduce growing security and privacy concerns. To address these issues are particularly challenging for low-cost RFID systems, where tags are extremely constrained in resources, power and cost. The primary reasons are: (1) the security requirements of low-cost RFID systems are even more rigorous due to large operation range and mass deployment; and (2) the passive tags' modest capabilities and the necessity to keep their prices low present a novel problem that goes beyond the well-studied problems of traditional cryptography. This thesis presents our research results on the design and the analysis of security schemes for low-cost RFID systems. Motivated by the recent attention on exploiting physical layer resources in the design of security schemes, we investigate how to solve the eavesdropping, modification and one particular type of relay attacks toward the tag-to-reader communication in passive RFID systems without requiring lightweight ciphers. To this end, we propose a novel physical layer scheme, called Backscatter modulation- and Uncoordinated frequency hopping-assisted Physical Layer Enhancement (BUPLE). The idea behind it is to use the amplitude of the carrier to transmit messages as normal, while to utilize its periodically varied frequency to hide the transmission from the eavesdropper/relayer and to exploit a random sequence modulated to the carrier's phase to defeat malicious modifications. We further improve its eavesdropping resistance through the coding in the physical layer, since BUPLE ensures that the tag-to-eavesdropper channel is strictly noisier than the tag-to-reader channel. Three practical Wiretap Channel Codes (WCCs) for passive tags are then proposed: two of them are constructed from linear error correcting codes, and the other one is constructed from a resilient vector Boolean function. The security and usability of BUPLE in conjunction with WCCs are further confirmed by our proof-of-concept implementation and testing. Eavesdropping the communication between a legitimate reader and a victim tag to obtain raw data is a basic tool for the adversary. However, given the fundamentality of eavesdropping attacks, there are limited prior work investigating its intension and extension for passive RFID systems. To this end, we firstly identified a brand-new attack, working at physical layer, against backscattered RFID communications, called unidirectional active eavesdropping, which defeats the customary impression that eavesdropping is a ``passive" attack. To launch this attack, the adversary transmits an un-modulated carrier (called blank carrier) at a certain frequency while a valid reader and a tag interacts at another frequency channel. Once the tag modulates the amplitude of reader's signal, it causes fluctuations on the blank carrier as well. By carefully examining the amplitude of the backscattered versions of the blank carrier and the reader's carrier, the adversary could intercept the ongoing reader-tag communication with either significantly lower bit error rate or from a significantly greater distance away. Our concept is demonstrated and empirically analyzed towards a popular low-cost RFID system, i.e., EPC Gen2. Although active eavesdropping in general is not trivial to be prohibited, for a particular type of active eavesdropper, namely a greedy proactive eavesdropper, we propose a simple countermeasure without introducing extra cost to current RFID systems. The needs of cryptographic primitives on constraint devices keep increasing with the growing pervasiveness of these devices. One recent design of the lightweight block cipher is Hummingbird-2. We study its cryptographic strength under a novel technique we developed, called Differential Sequence Attack (DSA), and present the first cryptanalytic result on this cipher. In particular, our full attack can be divided into two phases: preparation phase and key recovery phase. During the key recovery phase, we exploit the fact that the differential sequence for the last round of Hummingbird-2 can be retrieved by querying the full cipher, due to which, the search space of the secret key can be significantly reduced. Thus, by attacking the encryption (decryption resp.) of Hummingbird-2, our algorithm recovers 36-bit (another 28-bit resp.) out of 128-bit key with 2682^{68} (2602^{60} resp.) time complexity if particular differential conditions of the internal states and of the keys at one round can be imposed. Additionally, the rest 64-bit of the key can be exhaustively searched and the overall time complexity is dominated by 2682^{68}. During the preparation phase, by investing 2812^{81} effort in time, the adversary is able to create the differential conditions required in the key recovery phase with at least 0.5 probability. As an additional effort, we examine the cryptanalytic strength of another lightweight candidate known as A2U2, which is the most lightweight cryptographic primitive proposed so far for low-cost tags. Our chosen-plaintext-attack fully breaks this cipher by recovering its secret key with only querying the encryption twice on the victim tag and solving 32 sparse systems of linear equations (where each system has 56 unknowns and around 28 unknowns can be directly obtained without computation) in the worst case, which takes around 0.16 second on a Thinkpad T410 laptop

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security
    corecore